EK-DCJ11-UG-PRE

DCJI11
Microprocessor
User’'s Guide

PRELIMINARY

dlilgliltall




EK-DCJ11-UG-PRE

DCJI11
Microprocessor

User’s Guide

PRELIMINARY

Prepared by Educational Services
of
Digital Equipment Corporation



Preliminary, October 1983

Copyright © 1983 by Digital Equipment Corporation
All Rights Reserved

The material in this manual is for informational purposes and is
subject to change without notice.

Digital Equipment Corporation assumes no responsibility for any

errors which may appear in this manual.

Printed in U.S.A.

The following are trademarks of Digital Equipment Corporation:

DEC EduSystem RSTS
DECnet IAS RSX
DECUS MASSBUS TOPS-10
DECsystem-10 MI! 'C-11 TOPS-20
DECSYSTEM-20 OM. 1US UNIBUS
DECwriter 0S/8 VAX
DIBOL PDP VMS

250080 POT VT



CONTENTS

Page
PREFACE -

CHAPTER 1 ARCHITECTURE

1
OOV WN

| d

INTRODUCTION . o vt et sesesesossssossossssasacsesosssssssossssss
GENERAL-PURPOSE REGISTERS .. ctcteceososssossscssssssssascs
PROCESSOR STATUS WORD . :eevessessoscssssvessssscsssscssscoe
.1 ProcessSOr MOA@S.ceeeceovoscossnssosnsocnsssssscncssssse
.2 Priority LevelS.ieecesesoeosessososcsssoososcssscosossanse
.3 The Trace/Trap Bit.iieeseseeeecssosesssossssscnonese
.4
.5

Condition CodeS. . eeeeeesscesssscscsscsosssssossnsscs
Processor Status (PS) Protection......cceciveeceans
INTERRUPTS AND TRAPS . . cceeeectsscsssocsossssssoarssosscssssces
HALTING DCJ1]l OPERATION. ¢t veesvesoesssesscssscssosnsoscss
PROGRAM INTERRUPT REQUEST REGISTER.:¢eceteoescccersansss
CPU ERROR REGISTER .+ e ceeeotoesssosssesssosssosssossssssces
STACK PROTECTION . ¢ et ececeesosocsccsssossscesssnssssssoensscs
FLOATING-POINT PROCESSING. .t coveeeccescosssascsrssoscssoss 1-17

0 MEMORY SYSTEM REGISTERS . . v et eeesssorssctscosscossossosnnsse 1-17
1 DIRECT-MEMORY ACCESS (DMA) MECHANISM..:ctceeesococcscsscs

h‘Hfdkﬂthﬁ‘HbﬂhﬂdhﬂH

e OOUAND WWWWWw N -
1
=
- LRGN

-
|
| oaud
~

CHAPTER 2 PIN DESCRIPTION

2.1 INTRODUCTION. :coeceoeossovsoscssosssonsssssossscsscsosscocsas
2.2 DATA/ADDRESS LINES (DAL<21:00>) ccccccccsosoosnssornnssos
.1 Upper Data/Address Lines (DAL<21:16>).cccscescccncs
.2 Lower Data/Address Lines (DAL<15:00>).ccccececcanss
SYSTEM CONTROL LINES .. teccsecsossnssossscssscosscosscssosss
Bank Select (BS<1l:0>) .ccceevoscscccscossscancsssosnces
Address Input/Output (ATO<3:0>) ccecescrcvosoccsnncses
Buffer Control (BUFCTL) ceseecsovesososscsascsssosss
Continue (CONT) eeeevecrtoossosnsscssososssssssscsassssa
Data Valid (DV) e e eeeessvososnscosocsosssssssscsssscnse
TIMING SIGNALS . ¢t tceteessososunssoscossssscssssssscccs

[ I
[\S N ol

* o
\iqu\no\mmmc\mwu\mb.&bb»buwwwwwww

e o o & o o
s o o o o

Db W N -
I 1 | B I |

1 Address Latch Enable (ALE) o veveesvovocessocsososaocsocs
2 Stretch Control (SCTL) ¢eececssocccscosossscassssnoscsocs
3 Strobe (STRB) ceoeveosncnsaossosososnssssssssosssaresnass
4
5

NNNNNNN!})NNNNNNN
!
OOV INNOTOTAAAATTLUN NN OSSR REWNINDNDND

VSN NNNR RN NNNRD RN NN RO O

.4. CloCk 1 (CLK) cteeeioosoasnoscosccssssoscsscssascsasocssses -
.4. ClocKk 2 (CLK2) teveeoeecnscossossossnsssosssosnsanssns 2
. START/STOP CONTROL . ctceeesonsesscncsosscssssoscssncsscsss 2-
.5.1 Initialize (INIT) .eeeeereeosenossssosossosasnssnncsnes 2=
.5.2 Halt (HALT) ¢ eevoeeocsosnsssosscsscssscscssssssnsscasscse 2-
. STATUS SIGNALS . ¢t ceosassoersosssoscssssecsssssscscnssss 2-
.6.1 Cache MisSS (MISS) ieieeeneeorsssssoscssessssossssases 2—
.6.2 Parity Error (PARITY) ccuveessoccossosesosssocosnsoes 2
.6.3 AbOrt (ABORT) .ueoveeosossassssssassscassssssnosnnases 2—
.6.4 Map Enable (MAP) .ciseeesossssnosssconsssossssnnsass 2-
6.5 Predecode (PRDC) c:ivevsnonscsncosososssssssssssssess 2=
. INTERRUPT AND DMA CONTROL .. ¢t et eveociooccsssosssvsoasoss 2-
7.1 Interrupt Request (IRQ<3:0>) ccveeecccsascncsscnnnes 2-
7.2 Direct-Memory Access Request (DMR)..ceesecceconsnee 2
3 2

Power Fail (PWRF) cesveoeeossoscrosoossnsssnssansons

[
.
I

iii



7.4 Floating-Point Exception (FPE)
7.5 Event (EVENT) ...eeeeeeeeoennsns
8 TEST PINS.:.tcecesssscsassssnsacscos
8.1 Test 1 (TESTY)..veeeeeccenanns
8.2 Test 2 (TEST2) eeeeeonsecosnsns
9 OSCILLATOR PINS..:eescceccocccacss
9.1 XTALI and XTALO Generation....
10 POWER PINS..:iesuseee e
.10.1 Power (VCC).eiveeosneannnccnne
.10.2 Ground (GND) cvveeeeesssssasses
11

CHAPTER 3 BUS CYCLES

INTRODUCTION. cesveeeees
DURATION OF BUS CYCLES.
BUS CYCLE PARTS..ccovvsnoccassoves
NON-I/O (NIO) CYCLE.:.:ieoscsocoecs

® o e 0o 0 00 0 v

WWWwwwww www
« o s o @
= WO IIDINE W

BUS WRITE CYCLE.. . ietvvesoscnovens

INTERRUPT ACKNOWLEDGE CYCLE.......
10 DMA REQUESTS AND GRANTS......cce0

CHAPTER 4 MEMORY MANAGEMENT

INTRODUCTION, cccveveneoesoneanons .
ADDRESSING . eoessevesnossssocasones
I SPACE AND D SPACE..itceesvenvonn

- e e . e

o« s . .
\I\l\l\l\]\l\l\l\l\l\J\J\l\l\)\ld\ulmw\ﬂ\ﬂ\nw\nwbwu)r"
. . o .

Page Length Field (PLF).

« o o .
Nt\)(\)l\)[\)l\)l\)k—‘

.
* e

"‘]r—l

AULT RECOVERY REGISTERS. e o v e
Memory Management Register $#0
Error FlagS..eeosesvcosnse

.
.

o s
.« o
w N -

.
BB W N

Reserved Bits...... .

.
OV U B W
. e

Memory Management Register #1
Memory Management Register #2
Memory Management Register #3

-bb-bvbb-bvb-h-bbbbhbbbbbbbbbhbbhb&hb
e e o o o « .

.
N~

Enable I/O Map'....".l"'

iv

.

BUS READ CYCLE. . .tceoeoerossossensns

GENERAL-PURPOSE (GP) READ CYCLE.....
GENERAL-PURPOSE (GP) WRITE CYCLE....

CONSTRUCTION OF A PHYSICAL ADDRESS.
MANAGEMENT REGISTERS. ..ccctieanssenne
Page Address Registers (PARs).. .
Page Descriptor Registers (PDRS)......cceveuaenn
Byvass Cache...... vesseeesaee e cre oo

.1

. 2

3 Page Written.......ccevvvvnn
4 Expansion Direction (ED)...
5
.6
N

L]
.

.

.

. .

. .

e s o o .
.

« & o &

.
.
.
.

PIN DESCRIPTION SUMMARY....cccvocavnes ceeeean

Access Control Field.....cccec.n oo
Reserved BitS..eeeioesoos Chee s e s s as
NTERRUPT CONDITIONS UNDER MEMORY MANAGFMENT CONTROT...

o s 2 0 0 00 LI I )

(MMRO) .. ..

Abort -- Non-Resident..
Abort -- Page Length.....
Abort -- Read Only....... ceeoe e
Processor MOdE€.iceeeescennesonnsons
Page Address SpPaCel.:ieerceessscnnsns
Page NUMDEer..ceveeveccoocssnsns

Enable RelocationN...ceeveceveeenes

e« o 0 0 0 s 0 0

(MMR1) . . ..
(MMR2) . . ..
(MMR3) . ...

Reserved BitS...veeeescocnosococses

o 6 0 0 0 00 0 00

.
L]
.
3
.-
.
.
.
.
.

e & o &
.
.

o o e o
.

e o 8 o

e
.
.
.
.
e o o o o o o

o o 0 0 0 0 0 0 00

s 6 0 0 00 0 0 0 00

.

o o 5 0 0 0 o 0
* o o 0 “ o0

e o o o LN
. * e e o 0 v 00
s e e 0 00 L)

e oo o 0 8 0 0 s
e 2 5 8 60 0 0 00
e e o s 00 0 0 00
¢ o e 0 v o 0 0 00
® e 0 85 0 0 0 0 e

l\')Nl;JMN

[
= = O OO DO OO O ®

1
QOO

NMI})K\JMN

wwwwwu;:wuww

= O

1
O OAMDWWN

| 11
AN WN -

|
HHWOYOOOODPODEOIIII

o

O R O O R N O N i
1

o

|€>AJ>h.h¢-b¢>
I
=
oo



3 Enable 22-Bit MappPinge.cceeecsesssessscosossses 4-11
4 Enable Call To Supervisor Mode Instruction..... 4-13
5 Kernel, Supervisor, and User Mode D Space Bits. 4-13

7.4

7.4

7.4

7.5 Instruction Back-Up/Restart RecoOvery.....eeeeeesses 4-14
7.6 Clearing Status Registers Following Abort.......... 4-14
7.7 Multiple FAUltS...eeeossescoccesscssossscsncsssooes 4-14
8 MMU IMPLEMENTATION....:eeeeeccocsosasssssscsssossscsscse 4-14
8.1 Typical Memory Page.....eceeeeeseesescccccscccccssss 4=-15
8.2 Non-Consecutive Memory PageS...ceeeeececsccccsoocsss 4-17
8.3 Stack MemoOry PageS..ceevecscsosscecsccssccsscsssnes 4=17
8.4 TrANSPALENCY e e v tovsssssssssssssssassssssnssossensses 4-18
9

MEMORY MANAGEMENT UNIT -- REGISTER MAP.....cecvceeeceses 4-19

R N O N N

CHAPTER 5 SPECIAL FEATURES

INTRODUCTION. i ¢ ¢ e ecesasecosssssscesosssscsasssssecssssssss
CACHE MEMORY STATUS AND CONTROL REGISTERS.....cccceevse
Cache Control RegisSter..cceeeecesssoscscssvvsssescncns
Unconditional Cache Bypass (R/W).ceeeeeeooconns
Force Cache MiSsS (R/W) eeeetoetsossrsnocssocnsoncs
Uninterpreted BitS..eeeeeeeeccscoscorssssossoncs
Hit/MiSS REGISLEr.u.ctievosenseossscsosscsensessoosns
General Overation....ceveesosscossscesscssssosvecssns
Cache Memory In A Multiprocessor Environment.......
Sample ImplementatioN.cieesssessoscessccosssssonsses
CONSOLE ODT it ettoessssososnosscnsssososssssssssssssnsoca
Terminal Interface..cceieeosesssssssosssrscrsencansss

1 Receiver Control/Status Register (RCSR)....ee.
2 Receiver Buffer Register (RBUF)....ccceevcecossns
3
4

. .

w N -
[S2 0% )]
| [ I I |
HEOOOLEBEWNNONNONDF~H

NS W -
!

LI |
o

Transmitter Control and Status Register (XSCR).

Transmitter Buffer Register (XBUF)....ccoceeeen
Console ODT OperatioN...cesseseccscscconosocnoansossss
.3.2.1 Console ODT Initialization.....ceeceeeeeoscnonse
«3.2.2 Console ODT Output SeqgUEeNCe..cseveonvssvssssseos
. 3. Console ODT Command Set...eecoessssscsssssoasosacees O5=12
1 (ASCTI 057) SlaSh..eeeeesseessossossscssnssosesess 5-13
2 <CR> (ASCII 015) Carriage ReturN.....eeeessvese 5-14
3 <LF> (ASCII 012) Uine Feed...ivevseoevonsaconnsnns 5-14
4 $ (ASCII 044) Or R (ASCII 122).ceveevsscssnenes 5-15
5 S (ASCII 123) Processor Status Word............ 5-=15
6
7
8

o

7YY
e
N

G (ASCII 107) GOueveesesoeosoasssssossasssnsnses 5-16

P (ASCITI 120) Proceed...ececeescscascesssensnses 5=16
Control-Shift-S (ASCII 023)..cevcesccecsssasnss 5=17
Address SpecificationN...eeeessssssescsecsossnsensee 9=17
1 General RegiSterS...iieeessesconsscsnsasonseass 517
.2 Stack POINterS..ieeescesssssevocsasscsssnsssese 5=18
3 Floating-Point AccumulatorS..:.c.ceeeeececeesess 518
Entering Octal DigitS.cieeeereeessoceocansssessases 5=18
ODT Timeout...... - 1 3
Invalid CharacterS...ieeeeecesscosssssssssnsacnsees 5=-19
DCJ11l PIPELINE PROCESSING..:veescscessssescssssesssnnss 5-20
.1 Pipeline Flow EXampPle..ceeeesoosscsscsssesssnsesnsss 5=21

CHAPTER 6 ADDRESSING MODES AND BASE INSTRUCTION SET

6.1 INTRODUCTION.c-uoooooooouo'coaoooco-oo.o-o.o..on.oooo.o
6.2 ADDRESSING MODES. ..t eeeeercetscsscssssosssassssssscsccocns

NN
!
i—-"—‘



AUV UNOUON&EWWWWWNE

WWWWWWRWWWWWWWWWWwwWwWwwwww ww RN NN NN
. L] L] L]
W N

e o o e« e o
s @ @ o & o

e o o
e e e e e o
e e o o
B W N

e o6 o o e e o & o o o o o o
« ¢ o o o o o ° e o o o
DA NUTLE DB bW =
o« o ¢ o o . o
OO IANAUN DWN [\ S B W N

AN ANRNARAATAAAAANNAAAN DA VN (o2 WA« W« W o N We W e e e e ) B ) o))

'Single-Operand AdAressSingecececcscoccsosssoscananns

.l

CHAPTER 7

CHAPTER 8

DOUble-operand AddreSSing.............-...-........
Direct AdAressing...cceeceeccsscsscossocsocsnsonnnss
Register Mode....eseevscesosonsesesscsssccnncns
Autoincrement MOAe@...ieeeeoscecosossccosccncesns
Autodecrement MOde...veseesesssosscosccscssnnnse
Index MOA€..:.oteesoesvossossvsesensassossscsccocsse
Deferred (Indirect) AdAressSing.cececscecceccceeecences
Use of the PC As a General-Purpose Register........
Immediate MOA@..iieeseeossnosscsssssosscccasonsaes
AbSOlUte AddreSSing-.......g...'................
Relative AddressSing...cecesecsccescoscossccascnss
Relative-Deferred AddresSinNg..ececeescesccsscses
Use of the Stack Pointer As a General-Purpose

Register-.oo.oooono...-o-.oo...ol...oi...oob.obooto

INSTRUCTION SETO'l.."'........'............0.0'.......

Instruction FOrmMatS..eeeeeecscescecossosscocccccccess
Byte Instructions....ceeeeseescoscscssesssanccsccnns
List of InstructionsS..ceeeeeecssesesssscoccccccncns
Single-Operand INStruUCtiONS.cceeececeececcacennsnss
General....coveeesessossosscrosccsssssccnsssccans
Shifts and RotateS....ceeececescecesossccccnccaes
Multiple-PreciSioN..cieseetecscscaceccccosoannse
PS Word OperatorS...ccssecscssscosscssccssssccccas
Double-Operand INStructionNS...ceeeeececossscsccssosne
General...coeeeeecsoseosssessssscesscosssnssanses

Logical."0l.0lb.C0O.l........'.’.'......'0000.

Program Control InstructionS...ceecceecosscesccsscne
BranChesS...ieveeeessseeossseesssccsossassccsssscns
Signed Conditional Branches....cceceeeceocsccss
Unsigned Conditional BrancheS...ceceeeeeesecccss
Jump and Subroutine INStructionNS...ccceceesccces
‘TrapS.oolO.l.0..0..00!'0...000".."0.0..00000..
Miscellaneous Program Control....ceeeeceoscsces
Reserved Instruction TrapS..ccceesccescsscoccss
Trace TraAP..cccescosccassscsssccessssosonscnossaos

Special Cases Of The T-Bit..veeceecececoces

Miscellaneous INStruCtioNS..c.ieeieeeeeeeececosnsonsns

Condition Code OperatorS..cieecececcessosnccsoscsocss

FLOATING-POINT ARITHMETIC

INTRODUCTION'Cl0.'..'.........‘..0..0.."..0...........
FLOATING-POINT DATA FORMATSO.oo,o.ol.o.o'o.i.ooco'ooo..

Non-Vanishing Floating=-Point NumbersS...c.ceeeeeecess
Floating-Point Zeto. e & 85 0 0 & 0 .“ ® % 0 0 s 0 ® 8 0 0 0 00 0 0 0 00 00
Undefined Variables. ® & 6 5 5 & 5 05 50T OO O NP0 PEeee0Neee e

Floating"POint Data.ooo00000'0‘.0000000000.ou.l.oo.

FLOATING-POINT STATUS REGISTER::seseteecesococecsccanse
FLOATING EXCEPTION CODE AND ADDRESS REGISTERS....e0.....
FLOATING-POINT INSTRUCTION ADDRESSING....cceeeeescescaes
ACCURACY s ittt neetoeoncossossesosassessesssssesonnsnsnnss
FLOATING-POINT INSTRUCTIONS . ::seesecoccocscesnssosnnsses

INTERFACING

8.1 INTRODUCTION..O...O.'.Q..6l.'...O....'l.'l..‘..'......‘

vi

GQONQG\OSG'\OSOO\O\
HEWOWONIAADNWW

q~4~a\a\|? Q‘J‘JTJT
]
O QWN NN



ENERAL-PURPOSE (GP) CODES.I!'l"OQ....OO.....O...'..Q..
OWER-UP AND INITIALIZATION..-.-.ao-oo.o.oo'.ooocoooooo
1 Inltlallzatlon Tlmlng..ﬁ.Qo.0..........'.....00‘.D'
2 Initialization Mlcroroutlne........................
3
4

X2

Power-Up Conf lgurat lOn. LG BRI I IR I I I I I I I I I SR S I )
Power-Up CirCUit. ® 0 6 6.0 0 00 0O B SO O GO OSSO O PO L P EPE OSSOSO EOCES
OTHER MICROROUTINES ® 8 0 2 ¢ 0 2 L 0B A K G E OO N OO0 e e e LR A A ]

Q@Q?QOQ
RN N

APPENDIX A DC CHARACTERISTICS
APPENDIX B AC CHARACTERISTICS
APPENDIX C HARDWARE AND SOFTWARE DIFFERENCES
APPENDIX D INSTRUCTION TIMING

APPENDIX E GLOSSARY

INDEX

FIGURES

&)
[T
Q
c
la
(14

Page

DCJ1l Block DiagramM.seeeeescseeeesococoocoosansosnssses 1=1
DCJ1ll General-Purpose RegiSterS..c.eeeeescssccecsssnaeces 1=2
Processor Status Word.....oiveivieeereesesoneecnceneses 1=3
PIRQ Register.....cieiiieisieeivsnenereossooscansssnnss 1-15
CPU Error Register.....iviieeetesseseocoscsaceesassesee 1=15
DCJ1l Pin ASSignNmMentS....eiuseeeecssecscsoococansscanes 2=1
Typical XTALI and XTALO GeneratiON....ceeececssccsccses 2=9
Non-Stretched Non-I/O CYCle..:eeeeeesesoocosesccsscceass 3=
Stretched Non-I/O CYCle....oessesesevscscnscosssnsssssee 3=
Non-Stretched Bus Read CyCle..oeieeecosscssorssscccnsssne
Stretched Bus Read CyCle..iveeesssececsssscessscsonnnss
Bus Write CycCle..iieeeeesvsnsosseescaosscssssonseosannss
General-Purpose (GP) Read CyCle...icieeeeecossesccconncocs
General-Purpose (GP) Write CyCle.ieieeeecsossoscconsnnns
Interrupt Acknowledge CYCle.seeeeeeesecocesssssaossssss
Virtual Address Mapping Into Physical AddressS.....ceee.
Interpretation Of A Virtual AdAresSS....ceeseccecacsosscs
Displacement Field Of Virtual AddresS...ceeeeoescoccses
Construction Of A Physical AdAressS...cceeececccasccsocs
Active Page RegiSterS...iiiieeveseecescssocosocsansnonns
Page Address RegisSter....ivveeecieceeceesoscesoesonsnsosnss
Page Descriptor RegisSter (PDR)...eeeceeccccccccsoconascscse
Memory Management Register #0 (MMRO) .eeeeeooocoenooonss
Memory Management Register #1 (MMR1) ...eeeeeoeencnconses
Memory Management Register #3 (MMR3)...cceeeeccccnococes
16-Bit MapPPing..eieeieiineoioeoeeeoecessceensonssssoses
18-Bit MaPPiNg..veeeeiesiesvescsossssoeccscnassaossosns
22-Bit MAPPING ..t teeeeroeesososesoesesosonossosesoanssosss
TypPical MeMOILY PaAg@..ueveeooeccesoeseoassonsessnssnssss
4-15 Non-Consecutive MemOIry PageS..seeeeeesocceosscsscosssas
4~1€ Typical Stack MemoOry Page....iesieececoccssccsssscsssccs

1
HEOWONOANLWNONHFONOAUMBWNNRFRNDEFEOS WD -

|
HEFHRHRPHEREFFRFOYOADRBWNHOOIONO W

DO WD

o

11
-
|

1
=
oW N

DD OB LELELLLELDLEOEBEBWWWWWWWWND NFE
I

bbhbbbbbﬁbb?bbbbwuwwww

vii



(S0, VLR
| O T T Y N I T T

> w N
O

[
= OO~ N D WNH WO WU

= O

e R R e e e koAl R N R T, B, NV, N, R,
L

e el e

[ AR N

6-16
6-17
6-18
6-19
6-20
6-21
6-22
6-23
6-24
6-25
6-26
6-27
6-28
6-29
6-30
6-31
6-32
6-33
6-34
6-35
6-36
6-37
6-38
6-39
6-40
6-41
6-42
6-43
6-44
6-45
6-46

Cache Control Register.......
Hit/Miss Register......c.oeese

e e 9 8 6 0 0 8 0 00 0060000

6 86 0 000 8 00 0 0000000

Physical Address Partitioning For Cache Memoryv.........

Cache Entry.eeeeevecestesannes
Cache Entry With Parity.......

Sample Cache Control Register..
Receiver Control/Status Register
(RBUF) ¢ e 0o 0o es

Receiver Buffer Register

Transmitter Control/Status Register

Transmitter Buffer Register
Pipeline Filling Process......
Single-Operand Addressing.....
Double-Operand Addressing.....
Mode 0 Register......
Mode 2 Autoincrement....
Mode 4 Autodecrement...
Mode 6 ITndeX..eeeeeeososs ce e
INC R3 Increment....... ces e e
ADD R2,R4 Add.......... e v e
COMB R4 Complement Byte.......
CLR (R5)+ Clear...veeeeeenascn
CLRB (R5)+ Clear Byte..... .
ADD (R2)+ R4 Add....eveeeeesan
INC -(RO) Increment......o... .

2 e 0 0 0

INCB -(R0O) Increment Byte....coveeeesens

ADD -(R3),R0O Add..

LR R A R I A IR ]

CLR 200(R4) Clear..... e e e et

COMBR 200 (R1l) Complement Byte..
ADD 30(R2),20(RS) Add......c...

e e s o 5 0 0 v e

¢ o 0 @ 0 0 0 0 s 0 0 s 00 0o 0l

S 6 8 0 0 0 0 ¢ 08 20000

(XCSR) .

(XBUF) v v v

Mode 1 Register-Deferred......... veee

Mode 3 Autoincrement-Deferred.
Mode 5 Autodecrement-Deferred.

Mode 7 Index-Deferred..... e e

CLR @RS Clear.....
INC @(R2)+ Increment..........
COM @-(R0O) Complement.........

ADD @1000(R2),R1l Add....... e

ADD #10,R0 Add........ Ceee e

CLR @#1100 Clear........ et e e e e .

ADD Q#2000 Add.. .o vvvveann ‘o
INC A Increment..ceeeeecceosscs
CLR @A Clear..... e e s s s e s e e

Single-Operand Group....... e

Double-Operand Group l........

Double-Operand Group 2....... e

Program Control Group Branch..

Program Control Group JSR.....cceeeven..

Program Control Group RTS.....
Program Control Group Traps...

Program Control Group Subtract......

Mark..eeoeoe

Call To Supervisor Mode..........

Set Priority Level..
Operate GroupP...ceeeeoes
Condition GLOUP .« es oo essoseas

e 8 6 8 0 0 0 0 00

Byte Instructions.......

viii

e s o 0 o &

LIS

2 ¢ 6 0 0 0 0 s o0

(RCSR) e e v e

o o 0 0 0

e e o o s 0

Move To And From Previous Instruction/Data Space Group.

L L
e 6 % 62 8 0 s 00 0 0 e s
¢« o0 e e e 0 9 0 0 0 0 0 e 0
----- R R R R R A A A A
. s o0 0 0 0 * s 0 0 00 00
© 6 0 0 0 0 6 2 00 0 9 00 008 000
© a0 000 0 e s e 8 0000 0
o e 8 60 06 0 00000000000
.« o o 0 e 0 o e s 0 e 00 0 00
¢ o 0o 0 0 00 .o ¢ o 0o 0 0 0 e
s s 6 0 0 0 s 0 s 00 s o e 000 00
“ . e o e 0 0 0 0 0 e s 0 0 e
. e 0 0 a0 00 00 e “ o 0 0 0 60
o s 0o s 0 . . e o s 0 0 00
e o 0 ¢ 0 0 “ o L) . e 00
"o e 0 0 .«
* s 0 ¢ 0 e s s 0 0 e 0 * e 0 0
¢ 0 e e e 0 0 0 e 0 . 0 a0
. e s s s 0 0 000 e * o 00
.. - .o “« e 0 0 0 e o 0 o
. " o 0 000 8 0 00
oooooo e o 0 00 5 0 0 0 0 08 0
ooooo v o ® o s 00000 0
LIRS v e s 00 0 0 ¢ e o
s 0 0 0 0 0 0 e . e e 0 e s o0
a8 s % 0 0 v s s e 0 s 0 s e e o 0
oooooo . * o0 08 8000 0
. * o 0 s 0 e » o 0 0 * o0
oooooo ¢ o o s 0 0 0 0 0 s e 0
. e s e 0 0 s 0
.. e e o s 0 s 0 o e e 0 0 0 s
L) . » o 0 0 00 ¢ o
* 0 0 0 e s e DRI LY
P A ¢ o0 00 0 0 0 0
o e e o o s e 0 e 0 0 s s v v e
LRI « o o0 e s 8 0 ¢
DI S S Y ¢ o o 0 0 0 0 0 e
* e 0 0 8 0 e .
e e o 0 0 0 » " 5 0 0 00 00 e 0.
s 2 0 00 0 ¢ * s 9 0000 00 0 o
. . DRI I T I )
e s e 0 0 0 0 e * e s 00 o0 000
I R A A I Y B A A A )
6 e v 00 0 00 000000 e
D I I R A A A A I R B B B Y }

e o o o ® =

¢ 00

e e e e o o .

e o & o o o
o o o o e o
e o o o e o

.
.
e« o e & & o

* o 0 0 0 0

LR

LA )

[ I T T I | (]
VB WNHEFEFHFOMAONVSE DN
(=B e i)

J\ma\a\mmm\.:\mmmmmmmm

J\J\J\J\J\O\\?J"G\J\J\O\
P OOPOOoOOIIIThnnuU,

o

T T T I
(@]

HH DD
1

-

NN

=12
6-23
6-24
6-13
h-14
6-15
h-16
6-16
6-17
6-18
6-19
6-20
6=-20
6-20
6-20
6=-20
6-20
h-21
h-21
6-21
6-21
6-21
6-21
6-22
6=-22



~) ~3
I
> w o

Single-Precision Format...
Double-Precision Format..

7- 2”s Complement FOrmat....veeeeeecoceeconnns
7- Floating-Point Status Register.......cccece.
7-5 Floating-Point Addressing Modes.......cc0.
8-1 InitializationN....eeeeseecccrococnssosanccs
8-2 Initialization SequUENCe....cveeersrsosccsscss
8-3 Power-Up Configuration Register.......cee..
8-4 Power-Up Circuit..... teses s eecuenes s ae

8-5 Power-Down SeqQUEeNCEe..ceeeceenssssssocsosns

8-6 Console ODT Start SequUeNncCe..ussssecccccssns
A-1 Voltage Waveforms....... et enecosseseasen e
B-1 Clock Timing..ueeoeseeeoosercconccossososonesss
B-2 Three State Disable Test Circuit...ceeeveen
B-3 TTL Output Test Circuit..ieievecocoeosoennnns
B-4 MOS Output Test Circuit....eoeeoceesncceons
B-5 Non-Stretched Bus Read Timing.....cecccceee
B-6 Stretched Bus Read Timing...eeessoecesoseses
B-7 Bus Write Timing.....eeeeeeescoscsacosccnns
B-8 General-Purpose Read Timing...eeceeeesecoes
B-9 General-Purpose Write Timing..... . e
B-10 Interrupt Acknowledge TiMiNg.ceeooeoeesaoss
B-11 Interrupt Timing........ tesesseseseece o

TABLES

Table

1-1 1Instructions Influenced By Processor Modes.
1-2 Priority LevelsS....eveeeeceososvecsscsannense
1-3 PS Protection For Exp11c1t Accesses cer e
1-4 PS Protection For Traps And Interrupts....

1-5 PS Protection For RTI, RTT Instructions....
1-6 PS Protection For MTPS Instruction.........
1-7 PS Initialization During Power-Up..........
1-8 Interrupts, Traps, and Aborts..... ceesennae
2-1 BS Device Selection..... Ceecaeessseneseeann
2-2 AIO Decode..iisocescosaas ce s e s s eesces e .o
2-3 Interrupt Requests on IRQ<3:0>....... e
2-4 1RQ<3:0> Interrupt Request LevelS..c.eeseos
3-1 AIO Codes for Bus Cycles..... ciereenenes s
3-2 General-Purpose Read Codes...... creeecaaane
3-3 General-Purvose Write CodesS...cceerocercnnne
3-4 Interrupt Acknowledgement......oveeeesoenonse
4-1 I and D Space Referencing..ieeeececcccecans
4-2 Mode Bit Operations......eeceeee ceseennnans
5-1 Typical Hit/Miss OperationsS...ceeeeeeeeccen
5-2 Console ODT Commands.. ce s s e s s es e
5-3 Pipeline FlOoW..:..ieeeessesoscossoscoscoscccne
7-1 FPS Register BitS....eeeteeeecoccscscocnsas
8-1 GP Codes and FunctionsS....ceeeeeeeeccsconns
C-1 DCJ1l Programming DifferencesS....cieeeevess

ix

® 0 0 8 063 060 0 00 ¢ 0000000 00

e o e o o o

.

e« e e o e

.
.
3
.
.
.

e o 0 0

3
.
.
3
.
.

« o o o o o

e« o o

e o o o o e & o

o = o @« o o o o

WOPPOOODODIDII I
11 [ T I O A I I 11
NN DWWN
o ol

mwmwu‘umwwl
QNN OSOLHEDDWE OO IW

R
21}
O
1]

= e
[ T T T O O B I
OHFANHWHWHHFHFONOOHWHRFHEWOJINW!
[ W= O

[ FR T N D I |
Nw W

NIV NS DWWWWRNN NN
}



PREFACE

This user”s guide is intended to familiarize the reader with the
hardware and software characteristics of the DCJ11 microprocessor
CPU chip. It is assumed that the reader has had some experience
with microprocessor design. Readers should also have some
familiarity with PDP-11 architecture.

The book is organized as follows:
Chapter 1 provides an architectural overview of the DCJ1l.
Chapter 2 describes the function of each DCJ11l pin.

Chapter 3 describes the various types of DCJ1l bus cycles and
provides an overview of the timing relationships among DCJ11
inputs and outputs during these cycles.

Chapter 4 describes the architecture and operation of the DCJ1ll’s
integral memory management unit.

Chapter 5 provides information on three special features integral
to the DCJ1l: cache memory registers (this description also
includes cache memory design considerations), console ODT (also
called micro-ODT), and pipeline processing.

Chapter 6 describes the DCJ1l base inStruction set.

Chapter 7 describes the integral floating-point wunit and its
instruction set.

Chapter 8 provides some introductory information on interfacing
external logic to the DCJ1l. Power-up and initialization circuits
are provided,

Appendix A contains a summary of the DCJ11 DC characteristics.
Appendix B contains a summary of the DCJ1l AC characteristics.
Appendix C summarizes the hardware differences between: (1) the
DCJ1l1 and the PDP-11/44 and (2) the DCJ1l and the PDP-11/70.

Appendix C also contains a summary of the software differences
between the DCJ11 and other processors in the PDP-11 family.

Appendix D describes how to determine the duration of a DCJ11
instruction. Timings for both the base instruction set and the

floating-point instruction set are provided.

Appendix E contains a brief glossary of some DCJ1l terms.

X1



CHAPTER 1
ARCHITECTURE

1.1 INTRODUCTION

This chapter provides a brief introduction to the architecture of
the DCJ1l microprocessor. The DCJ1l 1is organized as shown in
Figure 1-1.

I""""""""""'""[" _______ Y "

DATA CHIP

ABOAT | —b
I [ R— — acF | CaRRY
1GR."

L | F——& STRR e et PaLE

. o e NG TR

e ) - COMPARATOR [pap

aR~rT — o SECUENCER L o g 5cr. VA 1260 —
— [

R t—— PRDC &2
b

| —— __J arcen Ly
— — ——— om—— o— .

PAR POR AEGISTER
Pl NCLUDES

I FLLATING BT MULTIPLE ¥ <

GESSTLRS &ND CP
BRIy
Ov

SPECIAL RUZ STERN

MMPBG ALl €0 fog INPUT
MMR1T et e 50 X OuTPUT
MEMORY ) MMRBY  Penr CATCHES

~
3
@
>
— —— —— — —— —— — — o — o—

' MAIN REGISTER BeUc328 ) R ).
SHIFTER INPUT
o 1 < ARITHMET
et aruse tooe ' [Seuzazen At ouTRUT Q8182787
AEGATERS WAPPE R MULIPLEXER
I S ARUSIDET NAaL 21-00
SHIFT EXFCUTION
SHIFT | CONTROL CONTHOL
REGISTER
CONDI'TION
' croE
[Reilis
EXECUTION A BUS 37 BIT

I
I
I
|
I
I
|
I
|
I
I
I
I
I
|
|
|
1
I

I
|
I
I
I
I
I
I
I
L]
I
I
I
|
I
I
I
I
I

" Pk

SR |

FPE ——a {} LATCH
' PARE mmted
ALt ABNRY
"AT TS wveRauer SERVICE
PAR TV g SEEVITE LOGIC
| EVEST mm] LTGIC PLa NEXT
LN AODRESS NAF
8" ——] REC, STER [Reielle
P
I NA —e A100
Bol b a1}
& ae
| o cnt e A2

?,;Ifﬂﬁ(z's"‘gl[ CFf*t RATOR A3
| CONTROL e CONTROL CHtP '

Figure 1-1 DCJ1l1l Block Diagram

As shown in Figure 1-1, the DCJ11 microprocessor consists of a
data chip'and a control chip.

The data chip performs all arithmetic and logic functions, handles
all data and address transfers, and generates most of the signals
used for system timing. In addition to the primary execution data
path, the data chip contains memory management logic, an I/0 state
sequencer, and floating-point and cache control registers.



The control chip directs the operation of the data chip with
microinstructions. The major components of the control chip are
the microprogram control store and the microprogram sequencing
logic.

A detailed description of the data chip and control chip and the
interface between them is beyond the scope of this book. We will
consider the data chip and control chip as one functional unit and
will describe only those portions of this unit that are
architecturally significant to the design engineer.

The remainder of this chapter briefly describes each of the major
components of the DCJ1l architecture. The chapter covers six
major topics:

General-purpose registers
Processor status word
Traps and interrupts
Floating point processing
Memory system registers
DMA mechanism

000000

1.2 GENERAL-PURPOSE REGISTERS

As shown in Figure 1-2, the DCJ1l has a dual set of six registers
RO through R5 and RO” through R5“, three stack pointers (R6)
corresponding to the three processor modes (see Paragraph 1l.3.1),
and a program counter (R7). RO through RS is also referred to as
register set 0 and R0O” through R5” is also called register set 1.

These registers are called general-purpose because’ they can be
used in a variety of ways. General-purpose registers serve as
accumulators, index registers, autoincrement registers,
autodecrement registers, or as stack pointers for temporary
storage of data. Arithmetic operations can be performed between
one general-purpose register and another or between a
general-purpose register and memory or an I/O device register.

RO RO’ KSP
R1 RY’ sSSP
R2 A2 usP
R3 R3’

R4 R4’ PC
RS RS’ PSW

Figure 1-2 DCJ1l General-Purpose Registers

At any given time, either register set RO through R5 is used or
register set RO’ through R5” is used. The two sets can not be
used simultaneously. These general-purpose registers are
organized as two sets to increase the speed of context switching
and some types of real-time data handling.



Register R6 is used as the hardware stack pointer (SP), which
indicates the last entry in the appropriate stack (the stacks are
common temporary areas with LIFO - 1last in, first out -
characteristics). There are three stack pointers: a kernel stack
pointer (KSP), a supervisor stack pointer (SSP), and a user stack
pointer (USP). Each stack pointer is associated with a different
processor mode (see Paragraph 1.3.1). When an interrupt or trap
occurs, the current CPU state (PC and PS) is automatically pushed
on the stack indicated by the interrupt or trap vector (see
Paragraph 1.4 for more information on interrupts and traps). The
stack-based architecture also facilitates reentrant programming.

Register R7 is used as the program counter - (PC). The PC contains
the address of the next instruction to be executed; thereby
controlling the order of execution of instructions. The PC is a
general-purpose register in the sense that it is directly
accessible by all single- and double-operand instructions. Much
of the power of the DCJ1l instruction set is achieved by utilizing
the PC in conjunction with various addressing modes. The PC is
not normally used as an accumulator for arithmetic operations.

1.3 PROCESSOR STATUS WORD

As shown in Figure 1-3, the processor status word (PS) contains
the condition codes describing the arithmetic or logical results
of the last instruction, a trace bit that forces a trap at the end
of an instruction (used for program debugging), the current
processor priority, and the current and previous processor modes.
The PS is located at physical address 17777776.

15 14 13 12 n 10 09 08 07 05 04 03 00
1 f T T
0 ] 2 T N 2 \ c
1 I 7 | ]
— I\ J - J [ J — J
j AF ¥
CURRENT CONDITION
MODE CODES
PREVI
MJ%EOUS TRACE BIT
REGISTER SET PRIORITY

UNUSED

MR 11042

Figure 1-3 Processor Status Word

BIT NAME FUNCTION
15:14 Carrent Mode Current processor mode:
(RW, protected)
Bits Mode
15 14
0 O© Kernel
0 1 Supervisor
1 0 Illegal
1 1 User



13:12 Previous Mode Previous processor mode; same

(RW, protected) encoding as for bits <15:14>.
11 Register Set General register set select:
(RW, protected) 0 = register set 0 (RO--RS5).
1 = register set 1 (R0O"--R57).
10:9 Unused The bits are unused and are aiways
: (Read only) read as zeroes.
8 Reserved This bit is reserved for future
(RW) DIGITAL use.
7:5 Priority Processor interrupt priority level:
(RW, protected)
Bits Priority Level
7 6 5
1 1 1 7
1 1 0 6
1 0 1 5
1 0 O 4
0 1 1 3
0o 1 o 2
0 0 1 1
0 0 O 0
4 Trace Trap Also called the T-bit. When set,
(RW, protected) the processor traps to location 14
at the end of the current
instruction. This bit cannot be
set directly by writing data to the
PS. This bit is typically set by the
RTI/RTT instruction. Trace trap is
disabled when this bit is zero.
3:0 Condition Codes Processor condition codes:

(RW)
N: Set if the result of the
previous operation was negative.

Z: Set if the result of the
previous operation was zero.

V: Set if the previous operation
resulted in an ar.thmetic
overflow.

C: Set if the previous operation
resulted in a carry of its most
significant bit.



1.3.1 Processor Modes - Three processor modes (user, supervisor,
and kernel) permit a fully protected environment for a

multiprogramming system by providing the programmer with three
distinct sets of processor stacks and memory manadgement registers
for memory mapping. In addition, certain PDP-11 instructions are
privileged 1in that their operation is inhibited in supervisor and
user modes, For example, 1in supervisor or user mode, the
processor will ignore the RESET and SPL (Set Priority Level)
instructions and the HALT instruction will cause a trap through
the wvector at virtual address 4 in kernel data space. 1In kernel
mode, the processor will execute all instructions. A summary of

the effects of processor modes on various instruction types is
provided in Table 1-1. .

Table 1-1 Instructions Influenced by Processor Modes

Instruction

or Instruction Operation in Operation in

Type Kernel Mode Supervisor/User Mode

HALT Depends on Traps through a vector
halt option at location 4 in kernel
selected (see data space.

Paragraph 1.5)

WAIT, RESET, Executes as Executes as a NOP.
SPL specified

RTI, RTT, Can alter Can not alter PS<7:5>
MPTS PS<7:5>

Stack Checked for Not checked for stack
Reference stack overflow.

overflow,.

1.3.2 Priority Levels -‘The priority level (mask bits) is
contained in bits <7:5> of the PS and is used by software to
determine which interrupts will be processed, as indicated in
Table 1-2.



Table 1-2 Priority Levels

Octal Value Interrupt Level
of PS<7:5> Acknowledged
""" 7 Nome
6 7
5 7, 6
4 7, 6, S
3 7, 6, 5, 4
2 7, 6, 5, 4, 3
1 7, 6, 5, 4, 3, 2
0 7, 6, 5, 4, 3, 2, 1

1.3.3 The Trace/Trap Bit - The trace/trap bit (bit 4) is used for
program debugging, enabling single-step execution of instructions
for step-by-step monitoring.

1.3.4 Condition Codes - The four condition codes N, 2, V, and C
contain information about the result of the last CPU operation.

These bits are set as described in Paragraph 1.3.

1.3.5 Processor Status (PS) Protection - Tables 1-3, 1-4, 1-5,
1-6, and 1-7 summarize how the PS is protected under a variety of
conditions. The PS is initialized at power-up (the value to which
it is 1initialized depends on power-up options) and is cleared at
console start. The RESET instruction does not affect the PS.



Table 1-3

PS Bit(s)
Condition
Codes

PS «<3:0>

Trap Bit
PS <4>

Processor
Priority
PS <7:5>

Register
Select
PS <11>

Previous
Mode
PS «<13:12>

Current
Mode
PS <15:14>

PS Protection For Explicit Accesses

User

un-

loaded
from
source
loaded
from
source
loaded
from
source

loaded
from
source

- ——— -

Super

loaded
from
source
loaded
from
source

loaded
from
source

Kernel

loaded
from
source

loaded
from

loaded
from
source

- - W ———




Table 1-4

PS Bit(s)
Condition
Codes

PS <3:0>

Trap Bit
PS <4>

Processor
Priority
PS <7:5>

Register
Select
PS <1ll1>

Previous
Mode
PS <13:12>

Current
Mode
PS <15:14>

PS Protection For Traps and Interrupts

TRAPS & INTERRUPTS

User

loaded
from
vecto

loaded
from
vector

Super

loaded
from
vector

loaded

from
vector

loaded
from
vector

PS

loaded
from
vector

Kernel

loaded
from
vector

loaded
from
vector

loaded
from
vector

PS

loaded
from
vector

1-8




Table 1-5 PS Protection For RTI, RTT Instructions
________ | - - ' -——— ——————
RTI, RTT
PS Bit(s) User Super Kernel
Condition loaded loaded loaded
Codes from from from
PS <3:0> stack stack stack
loaded loaded loaded
Trap Bit from from from
PS <4> stack stack stack
Processor un- un- loaded
Priority changed| changed| from
PS <7:5> stack
Register ORed ORed loaded
Select from from from
PS <11> stack¥* stack* stack
Previous ORed ORed loaded
Mode from from from
PS <13:12> stack* stack* stack
Current ORed ORed loaded
Mode from from from
PS <15:14> stack* stack* stack

* "ORed from stack” means that when the old
PS is popped from the stack (restored),
it cannot clear PS<15:11> in the current
PS if these bits have been set.

1-9



Table 1-6

PS Bit(s)

Condition
Codes
PS <3:0>

Trap Bit
PS <4>

Processor
Priority
PS <7:5>

Register
Select
PS «<1ll>

Previous
Mode
PS <13:12>

Current
Mode
PS «<15:14>

PS Protection for MTPS Instruction

loaded
from
source
un-
changed
un-
changed

un-
changed

un-
changed

un-
changed

un-

un-

un-

un-

un-

un-

un-

un-




Table 1-7 PS Initialization During Power-Up

’ POWER-UP
PS Bit(s)
Condition
Codes cleared
PS <3:0>
Trap Bit
PS <4> cleared
Processor depends
Priority on power-
PS <7:5> up option
Register
Select cleared
PS <1l1>
Previous
Mode cleared
PS <13:12>
Current cleared
Mode i.e.,
PS <15:14> kernel

mode

1.4 INTERRUPTS AND TRAPS

This paragraph provides a brief overview of DCJ11l interrupts and
traps and describes user-visible registers related to interrupts
and traps. Abort conditions are also covered. For detailed
timing and bus information, see Chapter 3 - Bus Cycles.

Interrupts and traps are requests that cause the DCJ1l to
temporarily suspend the execution of the current program and
provide service for the device or condition that caused the
interrupt or trap. Interrupts differ from traps in that
interrupts are initiated by some external event, while traps are
caused by conditions internal to the DCJ11l.

The DCJ1l operates at any of 8 levels of priority. 1In general, an
interrupt or trap affects the DCJ1l if its priority is greater
than the DCJ11“s priority as indicated by PS<7:5>. The exception
to this 1is a non-maskable interrupt or trap, which occurs
independently of the processor priority. Note that non-maskable



interrupts and traps have a priority structure amongst themselves.

When an interrupt or trap occurs, the current PS and PC are
preserved in order to allow a return to the interrupted program.
The new contents of the PC and the PS are fetched from two
consecutive memory words called a vector. The first word of the
vector contains the interrupt or trap service routine starting
address (the new PC), and the second word contains the new PS.
Vectors are either predefined by the DCJ11l or are user defined.
User defined vectors are vectors associated with interrupts
occuring on IRQ<3:0>. The predefined vectors are shown in Table
1-8. : ’

Specifically, for an interrupt or trap, the following sequence of
events occurs:

PS -=-> templ :ssave PS, PC in temporary
PC --> temp? sscratchpad locations
0 =--> PS<15:14> ;force kernel mode
M[V] --> PC ;fetch PC from vector, data space
M([V+2] --> PS sfetch PS from vector, data space
templ<15:14> --> PS<13:12> ;set previous mode
SpP-2 --> SP ;:pushed stack selected by new PS
templ --> M[SP] ;push old PS on stack, data space
Sp-2 --> SP
temp2 --> M[SP] ;push old PC on stack, data space
; then execute interrupt service
;routine . :

After the interrupt or trap service routine has been completed, an
RTI (Return From Interrupt) or RTT (Return From Trap) instruction
is typically executed. The top two words of the stack are
automatically popped off the stack and placed in the PC and PS,
respectively, thereby restoring the state of the interrupted
program.

The DCJ11l also responds to a variety of conditions which can abort
the current operation. An abort is similar to an interrupt or
trap in that a vector is used to point to a service routine.
Aborts differ from traps and interrupts in that the DCJ1l services
an abort immediately rather than waiting until the end of the
current macroinstruction. Aborts generated by the DCJ1l itself
include memory management and address errors. Aborts which must
be generated by external logic include bus timeouts, non-existent
memory accesses, and parity aborts. The signal ABORT is asserted
to indicate the presence of an abort condition.

DCJ11 interrupts, traps, and aborts (with their associated
priorities) are summarized in Table 1-8. For interrupts and
aborts, the name of the signal which initiates the interrupt or
abort (if any) appears in .the last column. For completeness,
Table 1-8 also lists several instructions that result in traps.
These instructions are mutually exclusive and have no priority
structure.

1-12



Table 1-8 Interrupts, Traps, and Aborts

Description

Red stack violation
(CPU error register,
bit 2)

Address error
(CPU error register,
bit 6)

Memory management
violation (MMRO,
bits <15:13>)

Timeout/non-existent
memory (CPU error
register, bits <5:4>)

Parity error

Trace (T bit) set
(PSW, bit 4)

Yellow stack violation
(CPU error register,
bit 3)

Power fail (PWRF)

Floating point
exception (FPA
present)

Floating point
exception (no
FPA)

PIR 7 (PIRQ, bit 15)

Interrupt level 7

EVENT

PIR 6 (PIRQ, bit 14)

Interrupt level 6

PIR 5 (PIRQ, bit 13)

Interrupt,

Trap, or Vector
Abort Address
Abort 4
Abort 4
Abort 250
Abort 4
Interrupt 114
or Abort

Trap 14
Trap 4
Interrupt 24
Interrupt 244
Trap 244
Trap 240
Interrupt UD
Interrupt 100
Trap 240
Interrupt uD
Trap 240

13

Priority

Level Signal
NM -
NM -
NM -—
NM ABORT
NM PARITY,

ABORT

NM -
NM -
NM PWRF
NM FPE
NM -
7 -
7 IRQ7
6 EVENT
6 -
6 IRQ6
5 -



Interrupt level 5 Interrupt © UD

5 IRQS
PIR 4 (PIRQ, bit 12) Trap 240 4 -
Interrupt level 4 Interrupt uD 4 IRQ4
PIR 3 (PIRQ, bit 1l1) Trap 240 3 -
PIR 2 (PIRQ, bit 10) Trap 240 2 -
PIR 1 (PIRQ, bit 9) Trap 240 1 -
TRAP Instruction Trap 34 ' -- -
EMT Instruction Trap 30 - -
I0OT Instruction Trap 20 - -
Illegal Instruction Trap 10 - --

NM = Non-maskable
UD = User-defined
-- = None

1.5 HALTING DCJ1l OPERATION

A halt operation differs from a interrupt, trap, or abort in that
there is no vector associated with it. It is similar, however, in
the sense that it interrupts the usual operation of the DCJ11l.
The two main means of halting the operation of the DCJ1l are to:
(1) assert the HALT line or (2) execute a HALT instruction.

The HALT line has a lower priority than any interrupt, trap, or
abort. However, it has the highest priority during vector reads.
This is to allow the user to break out of potential infinite
loops. An infinite 1loop could occur for example if a vector is
not properly mapped during a memory management operation.

Execution of the HALT instruction performs different operations
depending upon the CPU operating mode and the halt option
currently selected. See Chapter 8 - Interfacing for more details
on halt options. In kernel mode, a halt option of 1 causes a trap
through lecation 4 and sets bit 7 of the CPU error register when:
HALT 1is executed. If the halt option is 0 in kernel mode,
execution of the HALT instruction causes the DCJ1l into console
ODT. Execution of the HALT instruction in user or supervisor mode
causes a trap through location 4 and sets bit 7 of the CPU -error
register.

1-14



1.6 PROGRAM INTERRUPT REQUEST REGISTER

The program interrupt request register (PIRQ) provides seven
levels of software interrupt (i.e., trap) capability. An
interrupt request is queued by setting one of bits <15:9>, which
correspond to interrupt priority levels 7 through 1
(respectively). Bits <7:5> and «<3:1> are set-by the DCJ1l1l to the
encoded value of the highest pending request. When the program
interrupt request is granted, the processor traps through a vector
at wvirtual location 240. It is the responsibility of the
interrupt service routine to clear the appropriate bit in the PIRQ
before exiting. The format of the PIRQ is as shown in figure 1-4.

15 14 13 12 11 10 09 08 07 05 04 03 01 00

PIR7|PIR6|PIRS|PIRA[PIR3|PIR2|PIR1 0- 0 0

REQUEST LEVELS meun

PRIORITY ENCODED VALUE OF BITS <15.0>
Figure 1-4 PIRQ Register

Bits <15:9> can be read or written. Bits <7:5> and <3:1> are
read-only. The remaining bits are always read as zeros. PIRQ is
cleared by a console start, by a RESET instruction, and at
power-up time. The PIRQ resides at physical address 17777772.

1.7 CPU ERROR REGISTER

The CPU error register assists the operating system by identifying
the source of a trap through location 4. The CPU error register
is located at physical address 17777766. The format of the CPU
error register is as shown in Figure 1-5,

ILLEGAL HALT
ADDRESS ERROR
NON-EXISTENT MEMORY
1/0 BUS TIMEOUT
YELLOW STACK VIOLATION
RED STACK VIOLATION

MR $32¢

Figure 1-5 CPU Error Register



Bit

<15:8>

<l:0>

The CPU error register
power-up, or by a

itself

Name

Unused

Illegal HALT
(Read only)

Address Error
(Read only)

Non-Existent
Memory
(Read only)

I/0 Bus
Timeout
(Read only)

Yellow Stack
Trap
(Read only)

Red Stack Trap

(Read only)

Unused

, by a

Description

These bits are unused and are always
read as zeros.

Set when execution of a HALT instruction

is attempted in user or supervisor mode,

or in kernel mode when the HALT option is
enabled (refer to the power-up options in
Paragraph 8.3.3).

Set when a word access is made to an odd
byte address, or when an instruction

fetch from an internal register is
attempted.

Set when reference is made to a
non-existent memory address.

Set when reference is made to a
non-existent I/0 page address.

Set when a yellow zone stack
overflow trap occurs.

set when a red stack trap occurs.

These bits are unused and are always
read as zeros.

reference to
The

write
start.

is cleared by any
console

instruction has no effect on this register.

1.8

The DCJ1l provides hardware protection for the kernel stack.
supervisor
be checked by memory ma

Stack protection in Kk

STACK PROTECTION

and

user stac
nagement and appropriate software.

ks are not protected by hardware but may

ernel mode is provided by defining yellow and

red stack traps. Kernel stack references are checked against a
fixed 1imit of 400 (octal). If the virtual address of a Kkernel
stack reference 1is 1less than 400 (octal), a yellow stack trap
occurs at the end of the current instruction. A stack trap can

only

trap or interrupt pu
kernel mode,

occur on a kernel stack reference,
sh on the kernel stack, a JSR
ference in kernel mode using addressing Mode 4

or a re

which is defined as:
instruction in

1-16

RESET

The

any



or 5 with R6 as the selected register.

The DCJ1l also checks for kernel stack aborts during interrupt,
trap, or abort sequences. If an abort is caused by a kernel stack
push during an interrupt, a trap, or an abort sequence, the DCJ1l1
initiates a red stack trap by creating an emergency stack at
vector locations 0 and 2, vectoring through 1location 4, and
setting bit 2 of the CPU error register.

1.9 FLOATING-POINT PROCESSING

The DCJ1l contains an integral floating-point processor which can
perform single- and double-precision floating-point operations.
User-accessible architecture associated with floating-point

processing includes: six 64-bit floating-point accumulators
(AC0--ACS), a floating-point status register (FPS) , a
floating-point exception address (FEA) register, and a

floating-point exception code (FEC) register. Chapter 7 describes
these in detail and provides information on programming with
floating-point instructions.

1.10 * MEMORY SYSTEM REGISTERS

Memory system registers are used for: (1) cache memory
implementation and (2) memory management.,

The memory system registers associated with cache memory are the
cache control register (CCR) and the hit/miss register (HMR).
These registers are described in detail in Chapter 5 - Special
Features,

The memory system registers associated with memory management
include page address registers (PARs), page descriptor registers
(PDRs) , and memory management registers 0, 1, 2, and 3 (MMRO,
MMR1, MMR2, MMR3). These are described in detail in Chapter 4 -
Memory Management.

1.11 DIRECT-MEMORY ACCESS (DMA) MECHANISM

An external device typically performs a DMA transfer by taking
control of a buffered version of the DCJ1l”s data/address bus
(DAL<21:00>). A device requests control of the DAL lines by
asserting the DMR input to the DCJ1l. This causes the DCI1l to
pPlace DAL«15:00> in a high impedance state (DAL<21:16> is placed
in a high impedance state via external buffers) and extend the
current microcycle. It is the responsibility of external logic to
end the microcycle by asserting the DCJ1l“s CONT input.

The DCJ1l acknowledges a DMA request by asserting its MAP output



at the appropriate time. See Chapter 3 - Bus Cycleg for the
specific timing involved. This also causes the current microcycle
to extend until CONT is asserted.

A DMA request may be acknowledged and granted for all types of
microcycles except bus writes and GP writes. The lack of a DMA
grant, however, does not necessarily prevent external logic fgom
performing a DMA transfer during these cycles. A buffered version
of the DAL for example could be used for a DMA transfer when SCTL
is asserted (the DAL itself would not be used since it carries the

write data during this portion of the cycle).

NOTE

It is possible to acknowledge a DMA
request between the read and write
portions of a bus locked
Read-Modify-Write cycle (see Paragraph
3.2). If this is not desirable, external
logic should be designed to disable DMA
requests at this time.

1-18



CHAPTER 2
PIN DESCRIPTIONS

2.1 INTRODUCTION

This chapter describes the functions performed by each DCJ11 pin.
The pins, and thus the chapter, are divided into nine groups:
Data/address lines (DAL<21:00>)

System control lines (BS<1:0>, AIO<3:0>, BUFCTL, CONT, DV)
Timing signals (ALE, SCTL, STRB, CLK,. CLK2)

Start/stop control (INIT, HALT) :

Status signals (MISS, PARITY, ABORT, MAP, PRDC)

Interrupt and DMA control (IRQ<3:0>, DMR, BWRF, FPE, EVENT)
Test pins (TEST1, TEST2)

Oscillator pins (XTLI, XTLO)

Power pins (Vecec, GND)

0000000O0OO

Figure 2-1 illustrates the pin assignments of the DCJ11 and
indicates whether a signal associated with a pin is an input, an
output, or both (bidirectional).

TEST1 — 60 jes DAL6
AID O 2 59 lee DALY
A0 1 -y 3 58 pae DAL 8
AIO 2 -4 57 jme DAL O
AIO 3 -i5 56 o DALY
PWET —{ 6 55 o DAL 10
FPE —{ 7 54 oo DAL 11
EVENT —el g 53 jee DAL 12
HALT —{ 0 52 pan DAL 13
IRQ O —e{ 10 51 jee DAL 14
IRQ 1 —] 11 50 pae DAL 15
1RQ 2 — 12 49 len DAL 1
IRQ 3 — 13 48 les DAL 2
PRRTTY -l 14 47 fas DAL 3
GND —15 46 — Vee
Ve —lg N a5l GND
BSO -l 17 44 len DAL 4
BS 1 -{ 18 43 [ee DALS
VAP - 19 42 jpa— DV
TORT - 20 41 | BOFCTL
DAL 21 -— 21 40 |- E_ .
DAL 20 22 39 - STRB
DAL 19 -—{ 23 38 FCTC
DAL 18 L P 37 b XTALO
DAL 17 -y 25 36 fu— XTALI
DAL 16 26 35 e CLx

d —127 3 e CLK2
5;15-2 —{ 28 33 TNTT
PROC - 29 32 j— CONT
NOT USED —{30 3 jo— TEST2

MR 8889

Figure 2-1 DCJ1l Pin Assignments



2.2 DATA/ADDRESS LINES (DAL<21:00>)

There are 22 pins associated with data and address information.
These are usually referred to as the data/address (or DAL) lines.
The DAL lines are functionally divided into two groups: the upper
data/address lines (DAL<21:16>) which are output only and the
lower data/address lines (DAL<15:00>) which are bidirectional.

2.2.1 Upper Data/Address Lines (DAL<21:16>) - These six
time-multiplexed output 1lines constitute the most significant 6
bits of a 22-bit physical address. DAL<21:16> carries valid
information at the beginning of every bus cycle. Internal status
is asserted on these lines during the second part of every bus
cycle for manufacturing test purposes only.

2.2.2 Lower Data/Address Lines (DAL<15:00>) - These
time-multiplexed 1I/0 lines constitute the 16-bit data and address
bus. During the first part of a cycle that involves an 1I/0
transfer, the DAL 1lines carry a physical address, an interrupt
acknowledge priority level, or a general-purpose (GP) code,
depending upon the type of cycle being performed (see Chapter 3 -
Bus Cycles for more information on cycle types). During a Bus
Read or Bus Write cycle, DAL<15:00> carries the lower 16 bits of a
physical address. During an Interrupt Acknowledge cycle, DAL<3:0>
carries the priority of the acknowledged 1level. During a
General-Purpose Read or General-Purpose Write cycle, DAL<7:0>
carries the GP code.

During the second part of a cycle that involves an 1I1/0 transfer,
the DAL 1lines carry 8 or 16 bits of data. During read cycles,
external logic places data onto the DAL. If the DCJ1l only
requires a byte of information, it reads a full word but ignores
either the upper of lower byte. For write cycles, the DAL carries
8 or 16 bits of data, depending upon whether the cycle involves
the writing of a byte or a word.

2.3 SYSTEM CONTROL LINES,

There are nine pins associated with system control: BS<1:0>,
AIO<3:0>, BUFcTL, CONT, and DV.

2.3.1 Bank Select (BS<1l:0>) - These time-multiplexed output
signals transmit bank select and cache access information. At the
beginning of a Bus Read or Bus Write cycle, the BS signals define
the type of device being accessed by the physical address on the
DAL as shown in Table 2-1.



Table 2-1 BS Device Selection

BS1 BSO DESCRIPTION
1 1 Internal register -

A memory-addressable register that resides
within the DCJ1l. Included are the
processor status word, all MMU registers,
the PIRQ register, the CPU error register
and the cache hit/miss register. Excluded
are the general-purpose registers, which
are not memory addressable.

1 0 External I/0 device -
Any device or register external to the
DCJ11 that is referenced by a bus
address in the upper 8K bytes of the
physical address range (17760000 to
17777777). Excluded are system registers
(BS code 01) and internal registers (BS
code 11).

0 1 System register -
A memory-addressable register in the
address range 17777740 to 17777750.
Always included as a system register is
the DCJ11°s internal cache control
register (CCR).

NOTE
The CCR is the only system register
implemented in the DCJ1l. Accesses to
the CCR generate the same BS code as for
the other system registers mentioned
above. This facilitates the creation of
"shadow" read-only copies of the CCR on
cache based systems.

0 0 Memory -
A reference to any location in physical
address space in the range 00000000 to
17757777.

During the second part of an I/0 cycle, BS1 is asserted when the
cache memory (if present) is to be bypassed. 1In the second part
of the cycle, BSO is asserted whenever a cache memory force miss
is required.

2.3.2 Address Input/Output (AIO<3:0>) - The AIO outputs identify
the type of cycle currently being executed. External logic
typically latches and decodes these signals. Table 2-2 specifies
the AIO code associated with each cycle type. See Chapter 3 - Bus
Cycles for detailed information on the various cycle types.



Table 2-2 AIO Decode

AIO3 AIO2 AIOl AIO0 CYCLE TYPE

NIO (internal operation only, no I/0O)
GP (General-Purpose) read
Interrupt acknowledge, vector read
Instruction-stream request read
Read/Modify/Write - no bus lock
Read/Modify/Write - bus lock
Data-stream read .
Instruction-stream demand read

GP word write

Bus byte write

Bus word write

COOKHMHEFHHEMH
COHOOOOHKHKKH
OHOOOKHHOOKHKH
HFRPHOMHOHOKOH

2.3.3 Buffer Control (BUFCTL) - The BUFCTL output defines whether
the DCJ1l is driving or receiving data on the DAL. BUFCTL is
typically used by external logic to control the direction of data
passing through buffers that send data to the DCJ1ll. When
asserted, BUFCTL indicates that the DCJ1l is not driving data on
the DAL. This occurs: (1) during the portion of a read cycle
when data is being driven on the DAL, and (2) during the stretched
portion of any nonwrite cycle. BUFCTL is deasserted when the
DCJ1l is driving data or an address on the DAL.

2.3.4 Continue (ZONT) - The CONT input is asserted by external
logic to _terminate a stretched cycle after it has finished using
the DAL. &ONT is so named because it enables the DCJ1l1 to
continue on to the next cycle.

2.3.5 Data Valid (DV) - The DV input is typically asserted by

external 1logic to latch data into the DCJ1ll from the DAL. When

asserted, DV causes the DCJ1ll to latch data when BUFCTL and SCTL

are asserted, that 1is, during stretched non-write cycles.

External logic must ensure that DV is not asserted during DMA

gransactions, since this would cause the latching of unpredictable
ata.

2.4 TIMING SIGNALS

There are five pins associated with timing and synchronization:
ALE, 5CTL, STRB, CLK, and CLK2.



2.4.1 Address Latch Enable (ALE) - ALE when asserted indicates
that DAL<21:00>, AIO<3:0>, BS<1:0>, and MAP all contain valid
data. The leading edge of ALE is typically used by external logic
to latch_addresses, AIO codes, bank select (BS) codes, and the map
enable (MAP) control signal.

2.4.2 Stretch Control (8CTL) - The SCTL output, when asserted,
identifies the stretched portion of a cycle. During write cycles,
the leading or trailing edge of SCTL can be used for latching
data. During read cycles, the trailing edge of SCTL can be used
for latching data. CTL can also be used to determine when
externally generated aborts may occur.

2.4.3 Strobe (STRB) - The assertion of the STRB output occurs one
clock period after the assertion of ALE. The deassertion of STRB
identifies the end of one microcycle and the beginning of another.
STRE is a general-purpose strobe signal and is typically used for
system bus control.

2.4.4 Clock 1 (CLK) - CLK 1is wusually a clock output for
diagnostic use only. When wused as an output, CLK reflects the
state of the DCJ11”s internal clock. The frequency of CLK equals
the frequency of the external crystal oscillator circuit connected
to the XTALI and XTALO pins. If TESTZ is asserted, the DCJ11°s
internal clock is disabled and CLK is placed in the high-impedance
state. In this case, CLK can serve as a MOS input (Vrr, = .3Vcc,
Vry = .7Vec, tpp = typ = 7 ns) driven by an external clock.

2.4.5 Clock 2 (CLK2) - The CLK2 output has the same frequency as
CLK. Like CLK, CLK2 reflects the state of the DCJ1l”s internal
clock and is disabled by the assertion of TEST2. Unlike CLK, CLK2
is typically wused as a system clock or master clock for external
logic. CLK and CLK2 have minimal skew when loaded equally.

2.5 START/STOP CONTROL

There are two pins associated with starting and stopping the
operation of the DCJ1l: INIT and HALT.

2.5.1 Initialize (INIT) - The INIT input, when asserted,
initializes (resets) the DCJ1l by forcing it through a power-up
procedure. The power-up sequence 1is described in detail in
Paragraph 8.3.2.



2,5,2 Halt (HALT) - The HALT input, when asserted, forces the
DCJ1l into console mode (i.e., initiates console ODT). HALT is
the lowest priority nonmaskable interrupt except during vector
read cycles. During vector read cycles, HALT becomes the highest
priority non-maskable interrupt. This allows escape from
potential infinite looping which could result from programming
errors. Since it is non-maskable, HALT is unaffected by the CPU
priority specified by PS<7:5>. See Chapter 1 - Architecture.fgr a
l1ist of the non-maskable interrupts and their relative priorities.
See Chapter 5 - Special Features for a description of console ODT.

2.6 STATUS SIGNALS

There are five pins associated with indicating DCJ11 status:

MT3T, PARITY, ABORT, MAP, and PRDC.

2.6.1 Cache Miss (MISS) - The MISS input is generated by external
logic in DCJ1ll based systems incorporating cache memory. The
assertion of MI&3 typically indicates that the current memory
reference resulted 1in a cache memory miss. If MISS is asserted
during the first part of a bus read cycle, the cycle is stretched.

2.6.2 Parity Error (PARITY) - The assertion of the PARITY input
indicates the occurrence of a memory parity error. PARITY is used
to generate parity aborts and parity interrupts. If PARITY is
asserted and ABORT is also asserted, then a parity error abort is
generated. The DCJ11l immediately traps through a vector located
at virtual address 114 without completing the current instruction.
1f PARITY is asserted but ABORT is not asserted, then a parity
error interrupt is generated. At the end of the current
instruction, the interrupt is serviced through the vector located
at virtual address 114. Note that PARITY is sampled only during
the stretched portion of a cycle.

2.6.3 Abort (ABORT) =- ABGRT can serve as an input or an output of
the DCJ1l. ABORT 1is typically configured in an open-collector
driver circuit such that aborts generated by either external logic
or the DCJ1l can cause ABORT to be asserted (i.e., a wired OR
arrangement). Note that the DCJ11 pulls ABORT high internally.

The DCJ1l asserts ABORT during the first part of an I/0 cycle if a
memory management error or address error occurs. For a memory
management error, the DCJ1ll traps through a vector located at
virtual address 250 in kernel data space. For an address error,
the DCJ1l traps through a vector located at virtual address 4 in
kernel data space. The DCJ1ll sets the appropriate bit in the CPU
error register.

ABORT can also be asserted by external logic in the event of such
conditions as a bus timeout, non-existent memory reference, parity

2-6



error, etc. External logic must ensure that: (1) the cycle is
stretched and that AB is asserted during the stretched portion
(i.e., when SCTL is asserted) and (2) KBORT is not asserted during
a_non-1/0 cycle. If PARITY is not asserted, the assertion of

T by external logic causes a trap through a vector located at
virtual address 4 in kernel data space. The CPU error register
specifies the cause of the abort. If PARITY and are
asserted, the DCJ1l immediately performs a trap through a vector
located at virtual address 114 in virtual address space.

2.6.4 Map Enable (MAP) - MAP is a time-multiplexed output. The
assertion of MAP during the first part of a cycle indicates that
the I/0 map has been enabled (the I/0 map is enabled by setting
bit 5 of MMR3 to 1). The assertion of MAP during the second part
of a cycle acknowledges the assertion of the DMR input.

NOTE
The I/0 map, if needed, is implemented in
circuitry external to the DCJ11.

2.6.5 Predecode (PRDC) - The PRDC output, when asserted,
indicates that the contents of the prefetch buffer (PB) are being
decoded as the next macroinstruction. ~This 1implies that the
contents of the PB are valid. The PB is part of the DCJ1ll
Prefetch pipeline, the operation of which is explained in Chapter
S - Special Features.

2.7 INTERRUPT AND DMA CONTROL

There are eight pins associated with the control of program
interrupts and DMA transfers: IRQ<3:0>, DMR, TPWRF, FPE, and
EVENT.

2,7.1 1Interrupt Request (IRQ<3:0>) - IRQ<3:0> are four input
lines that correspond to four different levels of external
interrupt requests. Interrupt requests at any of these four
levels can be masked by PS<7:5>. 1In order to be serviced, the
requesting device must have an interrupt priority higher than the
priority indicated by PS<7:5>. Interrupt requests on IRQ<3:0> are
blocked or allowed as summarized in Table 2-3:

2=7



Table 2-3 Interrrupt Requests on IRQ<3:0>

CPU
Priority
PS<7:5> Level IRQ3 IRQ2 IRQ1 IRQO
111 7 Blocked Blocked Blocked Blocked
110 6 Allowed Blocked Blocked Blocked
101 5 Allowed Allowed Blocked Blocked
100 4 Allowed Allowed Allowed Blocked
0xx 3-0 Allowed Allowed Allowed

Allowed

x = Irrelevant

From Table 2-3, it is seen that each IRQ line is associated with a
different interrupt level, as summarized in Table 2-4.

Table 2-4 IRQ<3:0> Interrupt Request Levels

Interrupt
IRQ Line Request Level
IRQ3 7
IRQ2 6
IRQ1 5
IRQO 4

2.7.2 Direct Memory Access Request (DMR) - The BMR input to the
DCJ11 when asserted typically means that an external device wants
to perform a DMA transaction. BME is sampled by the DCJ1l at the

start of all cycles. If the cycle does not involve a write
operation, the DCJ1ll responds to the assertion of DMR by: (1)
stretching the cycle, (2) placing DAL<15:00> in the high-impedance
state, and (3) acknowledging the DMA request by asserting
during the second part of the cycle. If the cycle involves a
write operation, the cycle is stretched but DAL<15:00> is not
placed in the high-impedance state and MAP is not asserted.

2.7.3 Power Fail (PWRF) ~ PWRF is a
interrupt input that, when asserted, forces a trap through a
vector located at virtual address 24 in kernel data space.
External logic typically asserts PWRF to indicate the occurrence
of an AC power failure. The trap vector points to an appropriate
user-defined power fail service routine.

high-priority nonmaskable

2.7.4 Ploating-Point Exception (FPE) - FPE is a high-priority
nonmaskable interrupt input that, when asserted, forces a trap
through a vector located at virtual address 244 in kernel data
space. FPE would be asserted by an external FPA coprocessor to
indicate the occurrence of a floating-point exception. The trap
vector would point to an appropriate user-defined floating-point
exception service routine.

2-8



2.7.5 Event (EVENT) - The EVENT input is a maskable priority
level 6 interrupt (i.e., it is acknowledged if PS<7:5> is less
than 6). When EVENT is asserted (and not masked), the DCJ11l
performs a trap through a vector located at virtual address 100 in
kernel data space. EsﬁﬁT is typically used by external logic as a
line time clock (LTC) interrupt input. -

2.8 TEST PINS

There are two pins associated with testing, TEZTI and TESTD.
These signals disable DCJ11 functions and are are used in
connection with board-level testing.

2.8.1 Test 1 (TESTI) - The TEZTI input (when asserted by external
logic) disables all DCJ1l outputs by placing them in the
high-impedance state. This permits external logic to operate on
the data and control 1lines connected to the DCJ1l1 without
interference from the DCJ11.

2.8.2 Test 2 (TEST2) - The TEST? input, when asserted, disables
the DCJ1l°s internal clock. The CLK and CLK2 pins are placed in
the high-impedance state. Board level in-circuit testing logic
can be designed such that when TEST) is asserted, an external
clock drives the DCJ1l clock Ccircuitry through the CLK pin.

2.9 OSCILLATOR PINS (XTALI, XTALO)

The XTALI and XTALO pins are used to connect an external crystal
circuit to the DCJ1l. The recommended crystal circuit is shown in
Figure 2-2,

68pfF

)F* XTALI
crysTaL T ™
N
J o XTALO
" . 68pF

MR 9379

Figure 2-2 Typical XTALI and XTALO Generation

2.10 POWER PINS

There are four pins associated with power: two for +5VDC (Vece)
and two for ground (GND).

2~9



2.10.1 Power (Vcc) - There are two pins, both called Vcc, which
are used to input +5VDC to the DCJ1l. +5VDC is supplied by
external circuitry and is typically maintained to within = 5%.

2.10.2 Ground (GND) - The two GND pins provide a ground reference
for the DCJ1ll. Typically, these pins are connected to the ground
reference of external logic.

2.11 PIN DESCRIPTION SUMMARY

INPUT
OR

PIN NO. PIN NAME DEFINITION OUTPUT FUNCTION

1 TEST1 Test 1 Input Disables all DCJ1ll
outputs.

2-5 AIO<3:0> Address Output 1Indicate the type of
Input/Output cycle currently béing
executed (e.g., bus
read, GP write, IACK,
etc.)

6 PWRF Power Fail Input A high-priority non-
maskable interrupt
that forces a trap
through vector
location 24.
Indicates an AC power
failure.

|

7 FPE Floating-Point Input A high-priority non-
Exception maskable interrupt

that forces a trap
through vector
location 244.
Typically generated
by a floating-point
coprocessor to
indicate an exception
condition.

8 EVENT Event Input A maskable interrupt
that forces a trap
through vector
location 100.
Typically used as a
line time clock.



10-13

14

15
16

17-18

19

20

21-26

27

HALT

IRQ<3:0>

PARITY

GND
Vee

BS<1:0>

ABORT

DAL<21:16>

DMR

Halt

Interrupt
Request

Parity Error

Ground
Power

Bank Select

Map Enable

Abort

Data/Address
Lines

Direct Memory

Access Request

Input

Input

Input

Input
Input

Output

Output

I/0

Output

Input

A low-priority non-
maskable interrupt
that forces the
DCJ11l into console
ODT.

Four maskable
interrupt requecst
lines.

Indicates a memory
parity error.

Ground reference.
+5 VDC power input.

Multiplexed. Either
define the type of
physical address on
the DAL or indicate
if a cache memory
bypass or force miss
should occur.

Multiplexed,
indicates that either
the I/0 map is
enabled or a DMA
request has been
granted.

Indicates the
occurrence of an
abort condition,
i.e.; a memory
management or address
error, bus timeout,
non-existent memory,
or parity error.

Most significant six
bits of the time
multiplexed data and
address bus.

Forces the current
cycle to be extended
and causes MAP to be
asserted during the
second part of the
cycle.



28

29

30

31

32

33

34

35

36
37

38

39

40

MISS

Not Used

TEST2

CONT

INIT

CLK2

CLK

XTALI

XTALO .

SCTL

|

2

g

Caéhe Miss

Predecode

Test 2

Continue

Initialize

Clock 2

Clock 1

Crystal Input

Crystal Output

Stretcﬁ
Control

Strobe

Address Latch
Enable

Input

Output

Input

Input

Input

Output

Output

Input

Output

Output

Output

Output

Indicates whether the
current memory
reference resulted in
a cache hit or miss.

Indicates when the
contents of the
prefetch buffer are
being decoded as the
next macroinstruction.

Disables the clock
outputs. Permits
external logic to
drive the DCJ11l°s
internal clock
circuitry through the
CLK pin.

Terminates a stretched
cycle.

Initializes or resets
the system by forcing
it through a power-up
procedure.

Clock output with the
same frequency as CLK.
Typically used as a
system clock.

Clock output for
diagnostic use
only.

Oscillator input line.

Oscillator output
line.

Indicates that a cycle
is being stretched.
The edges can be used
to strobe data.

General-purpose
strobe.

Typically used to
latch addresses, AIO
codes, and the map
enable and BS control
signals.



41

42

43-’44 I}
47-60

45
46

BUFCTL

DV

DAL<15:00>

Vece

Buffer Control

Data Valid

Data/Address
Lines

Ground

Power

2-13

Output

Input

I/0

Input

Input

Indicates the
direction of data on
the DAL. Asserted when
the DCJ1l1l is not
driving the DAL.

Causes the DCJ1ll to

to latch data from the
DAL.

Lower 16 bits of the
time multiplexed

data and address bus.
Ground reference,

+5 VDC power input.



CHAPTER 3
BUS CYCLES

3.1 INTRODUCTION

This chapter describes the various types of DCJ1ll bus cycles. A
bus cycle 1is a sequence of events which defines the activity on
the DCJ11°s I/0 bus. Bus cycles are also sometimes referred to as
"microcycles", since each bus cycle is associated with the
execution of one microinstruction. The execution of a DCJ1ll
macroinstruction such as ADD, JMP, etc., can involve the execution
of several bus cycles. The type of bus cycle that the DCJ11
performs depends upon the type of bus activity (if any) required
to complete the execution of a microinstruction.

Sometimes the DCJ1l performs an internal operation which requires
no bus activity. If this 1is the case, the DCJ11l executes a
non-I/0 (NIO) cycle. An NIO bus cycle (described in detail in
Paragraph 3.4) is the only type of bus cycle that does not involve
the transfer of information over the DCJ1l1”s I/0 bus.

DCJ11l bus cycles fall into six broad categories:

l. Non-I/0

2. Bus Read

3. Bus Write

4. General-Purpose Read

5. General-Purpose Write

6. Interrupt Acknowledge

The deassertion of the signal 5TRB marks the beginning (and the
end) of a bus cycle. ALE (asserted shortly after S8TRB is
deasserted) can be used by external logic to latch AIO<3:0>. The

information on AIO<3:0> specifies the type of bus cycle being
performed according to Table 3-1:



Table 3-1 AIO Codes for Bus Cycles

ATIO<3:0> Description Bus Cycle Type
1111 Non-1/0 operation Non-1/0
1110 GP read General-Purpose Read
1101 Interrupt acknowledge/ Interrupt Acknowledge
vector read
1100 Instruction stream Bus Read
request read
1011 Read-Modify-Write, Bus Read*
no bus lock ’
1010  Read-Modify-Write, Bus Read*
bus lock
1001 Data stream read Bus Read
1000 Instruction stream Bus Read
demand read
0101 GP word write General-Purpose Write
0011 Bus byte write Bus Write
0001 Bus word write Bus Write

* Note that the AIO codes for read-modify-write cycles are
identified as Bus Read cycles. This refers to the first part
of the cycle (i.e., the "read" part). The second part of the
cycle (i.e., the "write" part) will be a Bus Write cycle with
a different AIO code.

3.2 DURATION OF BUS CYCLES

The length of a bus cycle is usually expressed as a number of
periods of the DCJ11”°s master clock (CLK). All bus cycles last
for a minimum of four <clock periods. However, cycles may be
extended or "stretched" beyond this minimum by an internal event
or by external logic. When a cycle is stretched, it 1is always
stretched for a minimum of four additional clock periods. A cycle
can continue to be stretched in increments of two periods and can
remain stretched indefinitely. Stretched cycles are ended by the
assertion of the signal CONT. CONT is sampled by the DCJ1ll on the
first falling edge of T4 and on every other succeeding falling
edge of T4.

A bus cycle will be stretched unless either of the following two
groups of conditions exists:

1. A Bus Read cycle is executed and BS<1:0> = 00 throughout the
cycle (i.e., the cycle involves a memory read and does not
involve a cache bypass or force miss) and DMR and MISS are not
asserted during the cycle (no DMA grant or cache miss).
Furthermore, ABORT must not be asserted if the cycle involves
an instruction stream demand read.

2. A Non-1/0 cycle is executed and DMR is not asserted during the
cycle.



Timing diagrams for both stretched and non-stretched cycles are
provided in the paragraphs that folle.

3.3 Bus Cycle Parts

Reference is sometimes made to the "first" (or "early") part and
the "second" (or "later") part of a bus cycle. The first part of
a bus cycle is defined as the duration of the first two clock
periods, shown as T0 and Tl in the bus cycle timing diagrams. The
second part of a bus cycle is defined as the duration of the
remaining clock periods in the cycle. A non-stretched cycle has
only two clock periods in its second part. These are shown as T2
and T3 in the bus cycle timing diagrams. A stretched cycle has at
least six clock periods in its second part. These are shown as T2
through T7 in the bus cycle timing diagrams. Note that if a cycle
is stretched for more than six clock periods in its second part,
T4 is repeated in pairs.

3.4 NON-I/O (NIO) CYCLE

When the DCJ11 executes a microinstruction which involves no
interaction with external logic (i.e., requires no I/0 bus
activity), it performs a Non-I/O (or NIO) cycle. Non-stretched
and stretched Non-I/O cycles are illustrated in Figures 3-1 and
3-2, respectively. '

ek A"'\_/F\_fl\_)’l\_/’r—z\_fﬂ\_)_\—*_\—
oaL IR D ))))CCCRDI !

s | W T

ato g AT CoDE AN

v TN

W »xx]? 1 owm cren

Figure 3-1 Non-Stretched Non-I/0 Cycle

3-3



T0 T1 T2 T3 T4 T4 174 T4 T4 T5 T6 * 17

w M\ S\ ST\ YT

SYSTEM INTERFACE DRIVES DAL

DAL DXL XX 2 , : Q@
e @ i |

5TAE I W : |
I N\ ; )
o 1/ _ T
e - T 02 srant ’ |

o Y 1 /g
e : ™ /A

MH 11456

Figure 3-2 Stretched Non-I/0 Cycle

The deassertion of STRB marks the beginning of the cycle, which_is
followed shortly afterwards by the assertion of ALE. ALE
typically latches the AIO code which identifies the cycle as
non-1/0. The DAL, BS<1:0>, MAP, and ABORT outputs are undefined
and should be ignored by external logic. External logic must not

assert ABORT during an NIO cycle. If a direct memory access
request (DMR) is granted, the cycle 1is stretched and L and
BUFCTL are asserted.

As shown in Figure 3-1, a non-stretched NIO cycle is four clock
periods in duration. If a DMA request is received during the
first part of the cycle the cycle is stretched to eight or more
clock periods (note the assertion of DMR during the first part of
the cycle in Figure 3-2). Otherwise, the cycle does not stretch.
If the NIO cycle is stretched, BUFCTL and SCTL are asserted during
the stretched part of the cycle. The time-multiplexed signal MAP
asserted during the second part of the stretched cycle indicates
the granting of the DMA request. The cycle continues to be
stretched in increments of two clock periods (T4) until CONT is
asserted.

3.5 BUS READ CYCLE

The different types of bus read cycles which the DCJ11 can perform
include instruction-stream request or demand reads, data-stream
reads, and the read portion of a read/modify/write cycle. The AIO
code defines which -of these is selected. The types of devices
from which information can be read include memory, I/0 devices,
and explicitly addressable registers. During the first part of
the cycle, BS<1:0> defines which of these is selected. All read
cycles 1involve the reading of a full word. If the DCJ1ll needs
only a byte, it reads a word and ignores the unused byte.

3-4



Note the distinction between request reads and demand reads. A
request read occurs when the DCJ1l is prefetching information. 1If
an abort occurs at this time, it does not affect macroinstruction
flow (i.e., aborts are ignored). All other types of reads are

demand reads, during which aborts are recognized and serviced via
the service vectors shown in Table 1-8.

Non--stretched and stretched Bus Read cycles are illustrated in
Figure 3-3 and 3-4, respectively.

Lk F\J’\_F\_F"\_fﬁ_)fﬂ\_f\_/m

LACH
SUBSYSTEM
< )
DAL («««SHYSICA:ADDRE)SS DAL E® «
ALE
BDMR /g ago"lc;Aesr\\\ DMA neouesr-?
R DAL si /) omacranT \\\

1/0 MAP ENABLE

s 7 — \\\I/0 BANK SELECT CACKE 5TATUS /7]

| i CACHE HIT
wiss ! { WY T/4’:.’4.;/'
: R
REORT ))X(}( MlMu ABORT STATUS WX

: )
BUFCTL | | \\\\lr- g

Figure 3-3 Non-Stretched Bus Read Cycle

MR- 8910

| ‘10 T T2

T3 ‘T4 ‘T4
CLK / : v '
PHYSICAL ADDRESS — CACHE SUBSYSTEM : oden IINTERFACE !
, ! : | i
DAL —{ (K e e | a
[ ;
ALE AN Vil | ;
DMA REQUEST - ' %
oA XX ¥ XX |
1/0 MAP ENABLE - ;
MAP (A YWQ OMA GRANT 5
1/0 BANK SELECT '
BS D) (G W CACHE STATUS .
CACHE HIT X
—— ) y// ;
e |CACHE MISS Lo
RBORT WK MMy ABORT STATUS AL MMU AND SYSTEM AB‘ORTi STATUS
_ : o
8UFCTL W AW? QM\ ; W‘
. . —
sCTL : AN i |
; clonrmue :
' t
ConT - | W ¢+ 7 |
: : . , |
DoV : ‘ /////I i

[LER.UTE

Figure 3-4 Stretched Bus Read Cycle



ALE can be used to latch the AIO code, the physical address on the
data/address lines (DAL), the Bank Select (BS) information, and
I/0 Map Enable (MAP) information.

A Bus Read cycle will stretch if any of the following conditions
exist: ’

o BS<1l:0> does not equal 00 during the first part of the cycle
(anything other than a memory reference)

o BS<1:0> does not equal 00 during the second part of the cycle
(a cache memory force miss or a cache bypass)

o MAP is asserted during the second part of the cycle (a DMA
grant)

o MIS3 is asserted during the second part of the cycle (a cache
miss)

o ABORT is asserted by the DCJ1l during an instruction stream
demand read, data stream read, or read-modify-write cycle

Otherwise, a Bus Read cycle will execute in four clock periods.

For non-stretched Bus Read cycles, the read data is synchronously
latched into the DCJ1l only on the rising edge of T3, as shown in
Figure 3-3.

For stretched Bus Read cycles, data is latched into the DCJ1ll both
at the rising edge of T3 and when DV is asserted during the
stretched portion of the cycle (see Figure 3-4). Thus 1if read
data is valid at the rising edge of T3, it is latched at that time
and DV is not required. If the read data is not valid at the
rising edge of T3, DV is required to latch the valid data. Note
that DV should be inhibited if the stretched Bus Read is due only
to a DMA grant,.

A stretched cycle lasts at least eight clock periods. A cycle is
stretched in increments of two clock periods (T4) and is ended by

the assertion of CONT.

If an internally generated abort condition such as an MMU error or
address error exists, 6he DCJ1ll asserts ABORT during the first
part of the cycle. If this type of abort occurs, the DAL, BS, and
MAP information should be ignored for the remainder of the cycle.
If an abort is externally generated (such as bus timeout,
non-existent memory reference, etc.), it must occur during the
stretched portion of the cycle.

3.6 BUS WRITE CYCLE

There are two different types of bus write cycles: Bus Word Write
cycles and Bus Byte Write cycles. The AIO code defines which of
these is selected. The types of devices to which information can
be written include memory, I/O devices, and bus addressable
registers. During the first part of the cycle, BS<1l:0> defines

3-6



which of these is selected.

Bus Write cycle timing is illustrated in Figure 3-5. Note that
Bus Write cycles are always stretched cycles.

| TO T i T2 | T3 iT4 | T4 |14 174 T4 'T5 ' T6 IT?

OAL -———-(((((((((', ’ )))))OO(X)OOOOOOO(X(( oA oY

LPHYSICAL ADDRESS

-
t

ALE A\ ay T .
MAP ) {( G [l oma GranT Lo }
170 MAP ENABLE | ‘ L |
8s ‘ ME 4 . DX{{cacHE sTaTus . ;
" 1/0 BANK SELECT : N T
ABORT M MMU ABORT STATUS \\\Y\ MMU AND SYSTEM ABORT‘STATUS |
5 g * g T l ‘\ i
8UFCTL j : ' ; : — - :
STt . W _ T

| ; CONTINUE

T T - - = | T

ii'iiili.w|l

MR 92

Figure 3-5 Bus Write Cycle

ALE typically latches the AIO code, the physical memory address on
the DAL, the BS information, and the I/0 map enable signal (MAP).

SCTL is asserted during the stretched portion of the cycle. The
write data is valid when B8CTL is asserted and the leading and
trailing edges of SCTL can be used by external logic to latch this
data. is not asserted during Bus Write cycles.

If an MMU error or address error abort occurs, the DCJ1l asserts
ABORT during the first part of the cycle. Externally generated
aborts must cause ABORT to be asserted during the stretched
portion of the cycle.

NOTE
If an abort occurs during the first part
of the «c¢ycle, the DAL, BS, and MAP
information should be ignored for the
remainder of the cycle.

During Bus Byte Write cycles, all 16 bits of DAL<15:0> are driven.
If the address is even, the correct data is on the low byte. If
the address is odd, the correct data is on the high byte. The
data on the unused byte is unspecified.

Since a Bus Write cycle is always stretched, CONT must be asserted
to end the cycle. ‘

3-7



3,7 GENERAL-PURPOSE (GP) READ CYCLE

General-purpose read cycles allow the DCJ1l to read data from
non-PDP-11 addressable external logic. A general-purpose read
cycle involves the driving of an address on DAL<7:0> (called the
general-purpose or GP code) which external logic must decode and
respond to. General-purpose read cycles involve the reading of a
full word. 1If the DCJ1ll requires only a byte, it reads a word and
ignores the unneeded byte. Timing for General-Purpose Read cycles
is shown in Figure 3-6.

o o r2 T3 T4 T4 T4 T4 T4 7§ !T6 117
(SN S (9) —eoa K
e N/ » | i
sUFETC W 7 W SR /,27/
SCTL : AN : : fﬂr_T__

CONTINUE

Figure 3-6 General-Purpose Read Cycle

ALE is typically used to latch the AIO code and the
general-purpose code on the DAL, A GP Read is always stretched
and thus always lasts a minimum of eight clock periods. The GP
code (which specifies the source of the read data) is driven onto
DAL<7:0> during the first part of the cycle. At this time,
DAL<21:8> should be ignored. The general-purpose read codes are
summarized in Table 3-2.

Table 3-2 General-Purpose Read Codes
Code Function
000 Reads the power-up mode, HALT
option, FPA option, POK, and

boot address. See Chapter 8
- Interfacing for further

details.
001 Reads FPA data (if FPA exists).
002 Reads the power-up mode, HALT

option, FPA option, POK, and
boot address, and clears FPA”“s
FPS L]

003 Acknowledges FPE and reads FEC
(floating exception code)
register (if FPA exists).

Note that GP Read data is latched into the DCJ1l1l both at the

3-8



rising edge of T3 and when DV is asserted during the stretched
portion of the cycle (see Figure 3-6). Thus if the data is wvalid
at the rising edge of T3, it is latched at that time and DV is not
required. If the data is not valid at the rising edge of T3, DV
is required to latch the valid data. Since a GP Read cycle is
stretched, it must be ended by the assertion of CONT.

NOTE
General-Purpose Read cycles can not be
aborted by the DCJ11l and should not be
aborted by external logic.

3.8 GENERAL-PURPOSE (GP) WRITE CYCLE

General-Purpose Write cycles allow the DCJ1l to write data to
non-PDP-11 external logic. A General-Purpose Write cycle involves
the driving of an address on DAL<7:0> (called the general-purpose
or GP code) which external logic must decode and respond to. GP
write cycles involve the writing of either a word or a byte.
Timing for General-Purpose Write cycles is shown in Figure 3-7.

! ‘T 171 ST2 ‘T3 T4 174 iT4 T4 T4 1T5 T6 T7
K

oat. ——{(W e+ cobe T RERIRRINI o aou:

S S — )
s M i R
BUFCTL ‘ : } : g

. I ‘ !
S W ;

CONTINUE

. l | MR 891y
Figure 3-7 General-Purpose Write Cycle !
ALE is typically used to latch the AIO code and the
general-purpose code on the DAL. A GP Write is always stretched
and thus always lasts a minimum of eight clock periods. The GP
code (which specifies the destination of the write data) is driven
onto DAL<7:0> during the first part of the cycle. At this time,
DAL<21:8> should be ignored. Table 3-3 provides a summary of the
GP Write codes. See Chapter 8 - Interfacing for further details.

3-9



Table 3-3 General-Purpose Write Codes

Code Function

003 Writes FPA 16-bit data

014 Asserts bus reset signal

034 Indicates exit from console ODT
040 Reserved for future use

100 Acknowledges assertion of EVENT
140 Acknowledges Power Fail

214 Negates bus reset signal

220 Microdiagnostic test 1 passed
224 Microdiagnostic test 2 passed
230 - Microdiagnostic test 3 passed
234 Indicates entry into console ODT

SCTL is asserted during the stretched portion of the GP Write
cycle. The write data is valid (and can be latched) on the rising
or falling edges of &SCTL. The write data is driven onto
DAL<15:00>. Since a GP Write cycle is always stretched, it must
be ended by the assertion of CONT.

NOTE
General-burpose Write cycles can not be
aborted by the DCJ1l and should not be
aborted by external logic.

3.9 INTERRUPT ACRNOWLEDGE BUS CYCLE

An Interrupt Acknowledge cycle (also called an Interrupt Vector
Read cycle) is performed to service an interrupt request from
IRQ<3:0>. Interrupt Acknowledge timing is illustrated in Figure
3-8. Note that the ' interrupt request on IRQ<3:0> must be
deasserted by the end of the cycle.

rmmw—mﬂj‘\

SYSTEM INTERFACE
DR|VES DAL

DAL

INTERHUPT LEVEL

! CONTINUE

Y /A ; ' !
" ; ‘ : N l i
X3GAT _ “W v ' '\\\\ SYISTEM Asgm s'rAlms Ty i l
soFeT I/ \ W m
ot ; — W T
|

CONT | ; & : | !

ov . i

-

{ 1 i i i T l

MR 8913

Figure 3-8 Interrupt Acknowledge Cycle

3-10



ALE is typically used by external logic to latch the AIO code and
the acknowledged interrupt level. The interrupt level
acknowledged is driven onto DAL<3:0> at the beginning of the cycle
as shown in the table below.

Table 3-4 Interrupt Acknowledgement

DAL<3:0> IRQ level acknowledged
0001 . 4 :
0010 5
0100 6
1000 7

At this time DAL<21l:4>=0.

As shown in Figure 3-8, the interrupt vector -address is placed on
the DAL by the interrupting device during the second part of the
cycle. An Interrupt Acknowledge cycle 1is always stretched and
consists of at 1least eight clock periods. It is stretched in
increments of two clock periods (T4) until the CONT input is
asserted, at which time the cycle is ended.

Note that the interrupt vector is latched into the DCJ1l both at
the rising edge of T3 and when DV is asserted during the stretched
portion of the cycle. Thus if the interrupt vector is valid at
the rising edge of T3, it is latched at that time and DV is not
required. If the interrupt vector is not valid at the rising edge
of T3, DV is required to latch it.

An Interrupt.Acknowledge cycle can be aborted during the stretched
portion of the cycle if ABORT is asserted by external logic. The
DCJ1l does not assert ABORT during the first part of an Interrupt
Acknowledge cycle. If an abort occurs, the DCJ1l ignores the
interrupt request and continues execution.

3.10 DMA REQUESTS AND GRANTS

If external logic needs to use the DAL to transfer data, it must:
(1) cause the DCJ1l to put the DAL in the high-impedance state,
and (2) stretch the cycle currently in progress while external
logic makes use of the DAL. This is accomplished by asserting the
DMR input during the first part of a cycle. 1In response, the DMA
request will be acknowledged and granted for all cycle types
except Bus Write and GP Write cycles. During Write cycles (which
are always  stretched), the DAL carries write data during the
second part of a cycle, during which time the DAL is not placed in
the high-impedance state. External logic could be designed such
that DMA transfers could occur during Write cycles as long as the
DMA transfer did not use the DAL coming directly from the DCJ1ll (a
buffered version of the DAL could be wused instead). In other
words, external 1logic 1is not prevented from performing a DMA
operation simply because a DMA grant does not occur.

A DMA request is acknowledged by asserting MAP during the second

part of a «cycle. A cycle involving a DMA transfer is stretched
and thus lasts a minimum of eight clock periods. It will continue

3-11



to be stretched in increments of two clock periods until the CONT
input is asserted. Note that the deassertion of PMR does not end

the cycle.



CHAPTER 4
MEMORY MANAGEMENT

4.1 INTRODUCTION

The DCJ1l contains a memory management unit (MMU) which provides
the user with the hardware necessary to effect complete memory
management and protection. The MMU is designed to provide access
to all of physical memory and is an important part of multi-user,
multiprogramming systems where memory protection and relocation
facilities are necessary. '

The MMU is used to assign segments of memory called pages to a
user program and prevent that user from making unauthorized
accesses to pages outside his assigned areasa. A user is thus
prevented from accidental or willful destruction of any other user
program or the system executive program.

The MMU is usually used in conjunction with a supervisory program
which determines how the MMU is to operate. 1In multiprogramming
environments this supervisory program controls the execution of
the various user programs, manages the allocation of memory and
peripheral device resources, and safequards the integrity of the
system as a whole by careful control of each user program.

The basic characteristics of the DCJ1l memory management unit are:
16 kernel mode memory pages

16 supervisor mode memory pages

16 user mode memory pages

8 pages in each mode for instructions

8 pages in each mode for data

Page lengths from 64 to 8192 bytes

Each page provided with full protection and relocation
Transparent operation

Memory access to 4 million bytes

000000O0O00O

The remainder of this chapter explains these characteristics 1in
detail.

4.2 ADDRESSING

When the MMU is active, a 16-bit address referenced in a program
is interpreted as a virtual address (VA) containing information to
be used in constructing a new 22-bit physical address (PA). The
~information contained in the virtual address is combined with
relocation information contained in a register called the page
address register (PAR) to yield the 22-bit physical address.
Using the MMU, memory can be dynamically allocated in pages
composed of from 1 to 128 contiguous blocks of 64 bytes each .
Figure 4-1 illustrates the relocation of wvirtual addresses to



physical addresses via page address registers.
PHYSICAL

ADDRESS SPACE
17777777 PAGE S
VIRTUAL
INSTRUCTION/DATA
ADDRESS SPACE PAGES
177777 PAR 7
PAR 6
PARS PAGE 7
PAR 4
PAR 3 \
PAR 2 PAGE 4
PAR 1
0 PAR 0 0
VIRTUAL ADDRESS PAGE ADDRESS REGISTERS PHYSICAL ADDRESS
(16 BITS) (22 BITS)

PAR = PAGE ADDRESS REGISTER

MR.11462

Figure 4-1 Virtual Address Mapping Into Physical Address

The starting physical address for each page 1is an integral
multiple of 64 bytes, and each page has a maximum size of 8192
bytes. Pages may be located anywhere within the 22-bit physical
address space.

Only one set of eight page address registers are illustrated in
Figure 4-1. Actually, six such sets of page address registers are
used by the MMU. The determination of which set of page registers
is enabled at any given time depends on the current CPU mode of
operation (i.e., kernel, supervisor, or user mode) and whether the
MMU is mapping instructions (into I space) or data (into D space).
Refer to Paragraph 4.5 for further details. -

4.3 I SPACE AND D SPACE

Wwhen the MMU is active, all addresses are mapped into either
instruction (I) space or data (D) space. 1 space is used for all
instruction fetches, index words, absolute addresses and immediate
operands. D space is used for all other references. I space and
D space each have 8 PARs in each mode of CPU operation (kernel,
supervisor, and user). Using memory management register #3
(MMR3), D space can be disabled such that all references
(instruction and data) are mapped through I space.

Table 4-1 defines how memory references are mapped into the I and
D spaces. Note that the determination of whether a memory
reference gets mapped into I space or D space depends on: the
type of instruction, the addressing mode, and the register
selected.



Table 4-1 I and D Space Referencing
(first/second/third memory references)

Address Mode Normal MTPI, MTPD ,MFPD,

and Reg Select Instruction MFPI MFPI
(not MTPI, MFPI (PS<15:12> {(PS<15:12>
MTPD, or MFPD) not 1111) = 1111)

00 - 07 na na na

10 - 16 D I D

17 I I D

20-- 26 D I D

27 I I D

30 - 36 D/D D/I D/D

37 1/D 1/1 I1/D

40 - 46 D I D

47 I I D

50 - 56 D/D D/1 D/D

57 I1/D I/1 1/D

60 - 67 I1/D 1/1 I/D

70 - 77 I1/D/D I1/D/1 I1/D/D

4.4 CONSTRUCTION OF A PHYSICAL ADDRESS

The basic information needed for the construction of a physic
address comes from the virtual address (illustrated in Figure 4-
and the appropriate PAR set.

ACTIVE PAGE ‘ DISPLACEMENT FIELD
FIELD
MR 11049

Figure 4-2 1Interpretation of a Virtual Address

The virtual address consists of:

al
2)

1. The active page field' (APF). This 3-bit field determines

which of eight page address registers (PARO through PAR7) wi
be used to form the physical address.

2. The displacement field (DF). This 13-bit field contains

11

an

address relative to the beginning of a page. This permits
page lengths up to 8K bytes. The DF is further subdivided

into two fields as shown in Figure 4-3,



BLOCK NUMBER DISPLACEMENT IN BLOCK
MRA.11080

Figure 4-3 Displacement Field of Virtual Address
The displacement field (DF) consists of:

1. The block number (BN). This 7-bit field i$ interpreted as the
block number within the current page.

2. The displacement in block (DIB). This 6-bit field contains
the displacement of the address within the block specified by
the block number.

The remainder of the information needed to construct the physical
address comes from the 16-bit page address field (PAF) (i.e. the
contents of the page address register (PAR)) that specifies the
starting address of a particular memory page. The PAF is actually
a block number in physical memory, e.g., PAF = 3 indicates a
starting address of 192 (3 x 64 bytes per block) decimal or 300
octal in physical memory.

The formation of the physical address is illustrated in Figure
4_4 .

16 13 12 06 05 00
VIRTUAL
A P F
ADDRESS
A -~ A ~ J}
r PLus——-I
SELECTS £
r o N\
l 15 00
PAR
[N —
|
EQUALS
+ '
v—
ql 06 05 00

PHYSICAL
ADDRESS

TX-4494

Figure 4-4 Construction of a Physical Address

The logical sequence involved in constructing a physical address
is as follows:

1. Select a set of page address registers depending on the CPU
mode (kernel, supervisor, or user) and the type of memory
reference (I or D space).

2. Use the active page field (APF) from the virtual address to
select one of eight page address registers (PARO through
PAR7) .



3. The page address field (PAF) of the selected page address
register (PAR) contains the starting address of the currently
active page as a block number in physical memory.

4. The block number (BN) from the virtual address is added to the
page address field to yield the number of the block in
physical memory which will contain the physical address being
constructed.

5. The displacement in block (DIB) from the displacement field of
the wvirtual address is appended to the physical block number
to yield a true 22-bit DCJ1l physical address.

4.5 MANAGEMENT REGISTERS

The DCJ1l1 MMU implements three sets of 32 16-bit registers as
shown in Figure 4-5. One set of registers is used in kernel mode,
another in supervisor mode, and the other in user mode. The
choice of which set to be used is determined by the current CPU
mode contained in the processor status register (PS). Each set
consists of "two groups of 16 registers. One group is used for
references to instruction (I) space and one to data (D) space.
The I space group is used for all instruction fetches, index
words, absolute addresses, and immediate operands. The D space
group is used for all other references, providing D space has not
been disabled by memory management register $#3. Each group
contains - 8 pairs of 16-bit registers. Half of the registers in
each group are page address registers, which operate as explained
previously. The other registers are page descriptor registers
(PDRs). PARs and PDRs are always selected in pairs. A PAR/PDR
pair contains all the information needed to describe and locate a
currently active memory page.

Each of the memory management registers described above are
located in the uppermost 8K bytes of the physical address space
(see Paragraph 4.9).



PROCESS STATUS WORD 3

3 ' '

KERNEL (00} SUPERVISOR (01) USER {11)

PARO | PDRO PARO | PORO PARO | PORO

1 SPACE

PAR? POR? PAR? POR? PAR? PDR?

PARO | PDRO PARO | PORO PARD | PDRO

D SPACE

PAR? POR7 PAR7 | PDR7 PAR7 | POR?

[LRIT

Figure 4-5 Active Page Registers

4.5.1 Page Address Registers (PARs) - As shown in Figure 4-6,
each page address register contains a 16-bit page address field
(PAF) which specifies the starting address of a page as a block

number in physical memory.
15 00

T I 1 I i ¥ 1 1 I 1 1 1 T ] T
PAF
] ] 1 ] ] 1 ] J 1 ] ] ] ! ] |

Figure 4-6 Page Address Register A 11083

The page address register which contains the page address field
may be thought of as a relocation register containing a relocation
constant, or as a base register containing a base address.

4.5.2 Page Descriptor Registers (PDR8) - Page descriptor

registers (PDRs) contain information on page expansion direction,
page length, and access control. Refer to Figure 4-7.

4-6



15 14 13 12 1 10 09 08 Q7 06 05 04 03 02 01 00

PAGE LENGTH FIELD (PLF) 0 w 0 0 ED ACF 0
1 | i ! ] | 1

BYPASS CACHE |
PAGE LENGTH FIELD

PAGE WRITTEN
EXPANSION DIRECTION
ACCESS CONTROL FIELD —

MR.8920

Figure 4-7 Page Descriptor Register (PDR)

4.5.2.1 Bypass Cache - Bit 15 implements a conditional cache
bypass mechanism. If set, references to the selected virtual page
can bypass cache memory if a cache is present in the system.

4.5.2.2 Page Length Field (PLF) - This 7-bit field occupying bits
<l4:8> of the PDR specifies the block number, which defines the
boundary of that page. The block number of the virtual address is
compared against the page length field to detect length errors.
An error occurs when expanding upwards if the block number is
greater than the page length field and when expanding downwards if
the block number is less than the page length field.

4.5.2.3 Page Written - Bit 6 (the W bit) indicates whether or not
this page has been modified (i.e., written into) since either the
PAR or PDR was loaded (W = 1 means the page has been modified).
The W bit 1is useful in applications which involve disk swapping
and memory overlays. It is used to determine which pages have
been modified and hence must be saved in their new form and which
pages have not been modified and can simply be overlaid.

Note that the W bit is reset to 0 whenever either PAR or PDR is
modified (written into).

4.5.2.4 Expansion Direction (ED) - Bit 3 specifies in which
direction the page expands. If ED = 0 the page expands upwards
from block number 0 to include blocks with higher addresses; if
ED = 1 the page expands downwards from block number 127 to include
blocks with lower addresses. Upward expansion is usually used for
program space while downward expansion is usually used for stack
space.



4.5.2.5 Access Control Field - This 2-bit field, occupying bits
<2:1> of the page descriptor register contains the access rights
of a particular page. The access codes or "keys" specify the
manner in which a page may be accessed and whether or not a given
access should result in an abort of the current operation. A
memory reference which causes an abort must not be completed by
the system interface. Aborts are used to catch "missing page

faults", prevent illegal accesses, etc.

In the context of access control the term "write®™ 1is used to
indicate the action of any instruction which modifies the contents
of any addressable byte. "Write" is synonymous with what is
sometimes called a "store" or "modify" in many computer systems.

The modes of access are as follows:

00 non-resident abort all accesses

01 read-only abort on write attempt
10 unused abort all accesses

11 read/write access

4.5.2.6 Reserved Bits - Bits 7, S5, 4, and 0 are spare and are
always read as O. These bits are reserved for possible future

expansion.

4.6 INTERRUPT CONDITIONS UNDER MEMORY MANAGEMENT CONTROL

With the MMU enabled, all trap, abort, and interrupt vectors are
considered to be in kernel mode virtual address space. When a
trap, abort, or interrupt occurs, control is transferred according
to a new program counter (PC) and processor status word (PS)
contained in a two-word vector that is relocated through the
kernel page address register set. The old PC and PS is pushed
onto the R6 stack specified by bits <15:14> of the new PS (00 =
kernel, 0l = supervisor, 1l = user). Bits <15:14> also determine
the new PAR set. In this manner it is possible for a kernel mode
program to have complete control over service assignments for all
interrupt conditions since the interrupt vector is located in
kernel space. The kernel program may assign the service of a
trap, abort, or interrupt condition to a supervisor or user mode
program by simply setting bits <15:14> of the new PS.

4.7 FAULT RECOVERY REGISTERS

Aborts generated by the MMU are vectored through kernel wvirtual
location 250. Memory management registers $0, #1, #2, and #3 are
used to determine why the abort occurred, and allow for -easy
program restarting. Note - that an abort to a location which is
itself an invalid address will cause another abort. Thus the
kernel program must insure that kernel virtual address 250 is
mapped to a valid address, otherwise a loop will occur which will

4-8



require console intervention.

4.7.1 Memory Management Register #0 (MMRO) - MMRO contains error
flags, the page number whose reference caused the abort, and
various other status flags. The register is organized as shown in
Figure 4-8.

15 14 13 12 1N 10 09 08 07 06 05 04 03 02 01 0C

ABORT j ‘ . ) . v
NON-RESIDENT :
ABORT PAGE :
LENGTH ERROR
ABORT READ-ONLY PAGE MODE PAGE NUMBER
ACCESS VIOLATION

PAGE ADDRESS

SPACE 1/0 ENABLE RELOCATION

Figure 4-8 Memory Management Register #0 (MMRO)

4.7.1.1 Error Flags - Bits <15:13» are error flags. They may be
considered to be in a "priority gqueue”"™ in that flags to the right
are less significant and should be ‘ignored if a higher bit is set.
That 1is, a non-resident fault service routine would ignore length
and access control faults. A page length fault service routine
would ignore access control faults.

Bits <15:13> when set (error conditions) cause the MMU to freeze
the contents of MMRO bits <6:1>, MMR1l, and MMR2. This is to
facilitate error recovery.

Bits <15:13> may be written under program control. No abort will
occur, but the contents of the memory management registers will be
frozen as in an abort,

Bits <15:13> are cleared at power-up, by a console start, or by a
RESET instruction. :

4.7.1.1.1 Abort -- Non-Resident - Bit 15 is set by attempting to
access a page with an access control field key equal to 0 or 2.
It is also set by attempting to wuse memory relocation with a
processor mode of 2 (i.e., the illegal processor mode).

4,.7.1.1.2 Abort -- Page Length - Bit 14 is set by attempting to
access a location in a page with a block number (virtual address
bits <12:6>) that is outside the area authorized by the page
length field of the PDR for that page. Bits 14 and 15 may be set
simultaneously by the same access attempt. Bit 14 may also be set
by attempting to use memory relocation with a processor mode of 2.

4-9



4.7.1.1.3 Abort -- Read Only - Bit 13 is set by attempting to
write in a "read-only" page. Read-only pages have access keys of

0l.

4.7.1.2 Reserved Bits - Bits <12:7> are spare and are always read
as 0. These bits are reserved for possible future expansion.

4.7.1.3 Processor Mode - Bits <6:5> indicate the CPU mode
(kernel, supervisor, or user) associated with the page causing an
abort (kernel = 00, supervisor = 01, user = 11, illegal mode =
10). If an illegal mode is specified, bit 15 is set.

4.7.1.4 Page Address Space - Bit 4 indicates the type of mapping
(I or D) the MMU attempted when an abort occurred (0 = I space, 1
= D space). It is used in conjunction with bits <3:1>, page
number.

4.7.1.5 Page Number - Bits <3:1> contain the page number of a
reference causing an MMU abort. Note that pages, like blocks, are
numbered from 0 upwards.

4.7.1.6 Enable Relocation - When bit 0 is set to a 1, the MMU |is
enabled and performs address relocation. When bit 0 is cleared,
the MMU 1is inoperative and addresses are not relocated or
protected. Bit 0 is cleared at power-up, by a console start, or
by a RESET instruction.

4,7.2 Memory Management Register #1 (MMR1l) - MMR1 (see Figure
4-9) records any autoincrement/autodecrement of the
general-purpose registers, including references through the PC.
This information is necessary to recover from an error resulting
in an abort. MMR1l is cleared at the beginning of each instruction
fetch. Whenever a general-purpose register is autoincremented or
autodecremented, the register number and the amount (in 2°s
complement notation) by which the register was modified is written
into MMR1. The low order byte of MMRl is written first. It is
not possible for a DCJ1l instruction to autoincrement/decrement
more than two general-purpose registers per instruction before an
"abort-causing” reference.

It is up to the software to determine which set of registers
(kernel/supervisor/user =-- deneral set O0/general set l) was
modified, by determining the CPU and register modes as contained
in the PS at the time of the abort.



1 ! ] ] ] | | l ] 1 ! L

\ > A, ~ A ~ A ~ J
AMOUNT CHANGED REGISTER AMOUNT CHANGED REGISTER
(2'S COMPLEMENT) NUMBER (2'S COMPLEMENT) NUMBER

MR 8924

Figure 4-9 Memory Management Register #1 (MMR1)

4.7.3 Memory Management Register #2 (MMR2) - MMR2 is loaded with
the current 16-bit wvirtual address at the beginning of each
instruction fetch. MMR2 is read-only; it can not be written.
MMR2 is the virtual program counter.

4.7.4 Memory Management Register #3 (MMR3) - As shown in Figure
4-10, MMR3 enables or disables the use of D space PARs and PDRs
and 22-bit mapping and controls data on the time-multiplexed
output MAP (pin 19 of the DCJ1ll).

15 14 13 12 11 10 09 08 07 06 05 ©04 03 02 O 00

¥

] 0 0 0 0 o| o ) 0 0 MODE

o 4

ENABLE 1/O MAP
ENABLE 22.BIT MAPPING
ENABLE CSM INSTRUCTION
KERNEL
SUPERVISOR
USER CLE I

Figure 4-10 Memory Management Register #3 (MMR3)

4.7.4.1 Reserved Bits - Bits <15:6> are spare and are always read
as 0. These bits are reserved for possible future expansion.

4.7.4.2 Enable I/O Map - Bit 5 is set to assert the MAP output of
the DCJ11. If bit 5 = 1 MAP is asserted. 1If bit 5 = 0 MAP is
unasserted. On initialization, MMR3 is cleared.

4.7.4.3 Enable 22-Bit Mapping - If bit 4 = 0 and the MMU is
enabled (bit 0 of MMRO = 1), the DCJ1l uses 18-bit mapping. 1If
bit 4 = 1 and the MMU is enabled, the DCJ1l uses 22-bit mapping.
If the MMU 1is disabled, bit 4 is ignored and 16-bit mapping is
used. Figures 4-11, 4-12, and 4-13 illustrates the three mapping
alternatives available. ‘



1171717

110
PAGE
17760000
wnmm
160000 o o
151777 00157777
o000 | _ _ _ __| 00000000
INCOMING VIRTUAL PHYSICAL
ADDRESS (16 B1TS) ADDRESS SPACE
(22 8ITS)

——— RELQCATION
NOT ACCESSIBLE IN THIS MODE

------ NO ADDRESS RELOCATION .
Figure 4-11 16-Bit Mapping
17717771
i/0
PAGE
17760000
00757777
1IN
MEMORY
MANAGEMENT
000000 00000000
INCOMING VIRTUAL PHYSICAL
ADORESS (16 B1TS] ADORESS SPACE
122 BITS)
————— RELOCATION
NOT ACCESSIBLE (N THIS MODE
CLEET Y]

Figure 4-12 18-Bit Mapping



wnnm
10
PAGE

17760000

177187717

1/-
MEMORY

MANAGEMENT

7

000000 00000000

INCOMING VIRTUAL PHYSICAL
ADDRESS (16 BITS) ADDRESS SPACE
(22 81TS)

v

et RELOCATION
LY

Figure 4-13 22-Bit Mapping

4.7.4.4 Enable Call To Supervisor Mode (CSM) Instruction - Bit 3
is used to enable a CSM instruction. If bit 3 is set to a1, a
CSM instruction will execute. If bit 3 = 0, a CSM instruction
will cause a trap through vector location 10. :

4.7.4.5 Kernel, Supervisor, And User Mode D Space Bits - Bits 2,
1, and 0 are the kernel, supervisor, and user mode D space bits,
respectively. These bits determine whether D space mapping is
enabled or disabled for each CPU mode. When D space is disabled,
all memory references use the T space registers; when D space is
enabled, both the I space and the D space registers are used.
When a mode bit is set, D space is enabled; when a mode bit is
clear, D space is disabled (see Table 4-2) .,

Table 4-2 Mode Bit Operations

BIT STATE OPERATION
2 0 Disable kernel D space
1 Enable kernel D space
1 0 Disable supervisor D space
1 Enable supervisor D space
0 0 Disable user D space
1 Enable user D space

4-13



4.7,% Instruction Back-Up/Restart Recovery - The process of
"backing-up" and restarting a partially completed instruction

involves:

1. Performing the appropriate memory management tasks to
alleviate the cause of the abort (e.g., loading a missing

page) .

2. Restoring the general-purpose registers indicated in MMR1l to
their original contents at the start of the instruction by
subtracting the "modify value" specified in MMRI.

3. Restoring the PC to the "abort time" PC by loading R/ with the
contents of MMR2, which contains the value of the virtual PC
at the time the instruction generating the abort was fetched.

Note that this back-up/restart procedure assumes that the
general-purpose register used in the aborted program segment will
not be used by the abort recovery routine. This is automatically
the case if the recovery program uses a different general register
set.

4.7.6 Clearing Status Registers Following Abort - At the end of
an abort service routine, bits <15:13> of MMRO must be set to 0 to
resume error checking. On the next memory reference following the
clearing of these bits, the various memory management registers
will resume monitoring the status of the addressing operations.
MMR2 will be loaded with the next instruction address, MMR1l will
store register change information, and MMRO will 1log MMU status
information.

4.7.7 Multiple Faults - Once an abort has occurred, any
subsequent errors that occur will not affect the state of the
memory management status registers, The information saved in
MMRO, MMR1l, MMR2, and MMR3 will always refer to the first abort
that was detected.

4,8 MMU IMPLEMENTATION

The MMU is a very general purpose memory management tool. It can
be used in a manner as simple or as intricate as desired. It can
be anything from a simple memory expansion device to a very
complete memory management facility.

In most normal applications, it is assumed that control over
memory page assignments and their protection resides in a
supervisory type program which operates at the nucleus of a CPU’s
executive (i.e. in kernel mode). It is further assumed that this
kernel mode program would set access keys in such a way as to
protect itself from willful or accidental destruction by
supervisor mode or user mode programs. Facilities are also
provided so that the nucleus can dynamically assign memory pages

4-14



of varying sizes in response to system needs.

4.8.1 Typical Memory Page - When the MMU is enabled, the kernel
mode program, a supervisor mode program, and a user mode program
each have eight active pages (described by the appropriate PARs
and PDRs) for data, and eight for instructions. Each page is made
up of from 1 to 128 blocks and is pointed to by the page address
field of the corresponding PAR as illustrated in Figure 4-14.

PA 331777

VA 157777 77 ¢
BLOCK 177g (12749}

fy
//;/////2

T
.

VA 144777 4 pA 316777
BLOCK 47g (3910

BLOCK 1

BLOCK O

PA 312000
PAR 6 3120
40000 PAF
VA 14000 3910 ACF
1/, 7 y
, 1
8C PLF W ED

| Figure 4-14 Typical Memory Pagé

The memory segment illustrated in Figure 4-14 has the following
attributes:

1. Page length: 40 blocks.
Virtual address range: 140000 - 144777,
Physical address range: 312000 - 316777.

« Nothing has been modified (i.e., written) in this page.

wn > w N
L [ ] L 2

Read-only protection.



6. Upward expansion.
7. Cache (if present in the system) is not bypassed.

These attributes were determined according to the following
scheme:

1. PAR6 and PDR6 were selected by the active page field of the
virtual address. (Bits <15:13> of the virtual address = 110)

2. The initial address of the page was determined from the page
address field of PAR6. (312000 (octal) = 3120 (octal) blocks
x 64 (octal) bytes). Note that the PAR which contains the PAF
constitutes what is often referred to as a base register
containing a base address or a relocation register containing
a relocation constant,

3. The page length (47 (octal) + 1 = 40 (decimal) blocks) was
determined from the page length field contained in PDR6. Any
attempts to reference beyond the 40 blocks in this page will
cause a page length error which will result in an abort,
vectored through kernel virtual address 250.

4. The physical addresses were constructed according to the
scheme illustrated in Figure 4-4.

5. The W bit (W = 0) indicates that no locations in this page
have been modified (i.e., written). If an attempt is made to
modify any location in this particular page, an access control
violation abort will occur. If this page were involved in a
disk swapping or memory overlay scheme, the W bit would be
used to determine whether it had been modified and thus
required saving before overlay.

6. This page is read-only protected, i.e. no locations in this
page may be modified. The mode of protection is specified by
the access control field of PDR6.

7. The direction of expansion is upward (ED = 0). If more blocks
are required in this segment, they will be added by assigning
blocks with higher relative addresses.

8. The Bypass Cache bit (bit 15) = 0 which means that cache
memory is not bypassed during this relocation operation.

Note that the various attributes which describe this page can all
be determined under software control. The parameters describing
the page are all loaded into the appropriate PAR and PDR under
program control. In a normal application it is assumed that the
particular page which itself contains these registers would be
assigned to the control of a supervisory type program operating in
kernel mode. ;



4.8.2 Non—Consecutive Memory Pages - It should be noted that
although the correspondance between virtual addresses and PAR/PDR
pairs is such that higher VAs have higher PAR/PDRs, this does not
mean that higher wvirtual addresses necessarily correspond to
higher physical addresses. It is quite simple to set up the PAFs
of the PARs so that higher virtual address blocks may be located
in lower physical address blocks as illustrated in Figure 4-15.

VA 037777 PA 457777
H
L]
VA 02 0000
PAR 7 0000 PA 46
PAF
VA 017777 PA 560777
‘
]
t
1
PAR 1 PAF

PAR O PAF wm PA 541000

MA110865

Figure 4-15 Non-Consecutive Memory Pages

Note that although a single memory page must consist of a block of
contiguous locations, memory pages do not have to be located in
consecutive physical address 1locations. Also note that the
assignment . of memory pages is not 1limited to consecutive
non-overlapping physical address locations.

4.8.3 Stack Memory Pages - When constructing DCJ1l programs, it
is often desirable to isolate all program variables from program
instructions by placing them on a register-indexed stack. These
variables can then be pushed or popped from the stack as needed.
DCJ1l stacks expand linearly downward to lower addresses when data
is pushed onto them. Thus, when a memory page which contains a
stack needs more room, it must expand downward. Blocks with lower
addresses relative to the current page must be added. This mode
of operation is specified.by setting the expansion direction (ED)
bit of the appropriate PDR to a 1. Figure 4-16 illustrates a
typical stack memory page.

4-17



VA 157777 PA 331777
BLOCK 177g {1274g)

BLOCK 176g (12610}

BLOCK 175g (12510}

e’

VA 157500 PA 331500

-

VA 140000 PA 312000

PAR 6

PAF
PDR 6 |BC %%%ﬂ% £o

Figure 4-16 Typical Stack Memory Page

>

CF

MR 11458

This page will have the following parameters:

o PAR6: PAF = 3120

o PDR6: PLF = 175 (octal) or 125 (decimal) (128 - 3).

o ED =1

o W=20orl

o ACF = n (to be determined by the programmer as the need
dictates)

Note: the W bit is set by internal chip hardware.

In this case the stack begins 128 blocks above the relative origin
of this memory page and extends downward for a length of three
blocks. A page length error abort vectored through kernel virtual
address 250 will be generated by the MMU when an attempt is made
to reference any location below the assigned area, i.e. when the
block number from the virtual address is less than the page length
field of the appropriate PDR. ‘

4,8.4 Transparency - In a multiprogramming application memory
pages can be allocated such that a particular program seems to
have a complete 64K memory configuration. Using relocation, a
kernel mode supervisory type program can easily perform all memory
management tasks in a manner entirely transparent to a supervisor
mode or user mode program. In effect, a DCJ1ll system can be
configured to provide maximum throughput and response to a variety
of users each of which seems to have a powerful system all to
himself.



4.9 MEMORY MANAGEMENT UNIT -~ REGISTER MAP

REGISTER

Memory Management Register
Memory Management Register
Memory Management Register
Memory Management Register

User I Space PDRO

User 1 Séace PDR7

User D Space PDRO

User D Space PDR7

User I Space PARO

.
L]

-User I Space PAR7

User D Space PARO

.

User D Space PAR?7

Supervisor I Space PDRO

Supervisor I Space PDR?7

Supervisor D Space PDRO

Supervisor D Space PDR7?

Supervisor I Space PARO

Supervisor I Space PAR7

#0 (MMRO)
#1 (MMR1)
$#2 (MMR2)
#3 (MMR3)

ADDRESS

17777572
17777574
17777576
17772516

17777600

17777616

17777620

17777636

17777640

17777656

17777660

17777676

17772200

17772216

17772220

17772236

17772240

17772256



Supervisor D Space PARO

Supervisor D Space PAR7

Kernel 1 Space PDRO

Kernel I Space PDR7

Kernel D Space PDRO

Kernel D Space PDR7

Kernel I Space PARO

Kernel I Space PAR7

Kernel D Space PARO

Kernel D Space PAR7

4-20

17772260

17772276

17772300

17772316

17772320

17772336

17772340

17772356

17772360

17772376



CHAPTER 5
SPECIAL FEATURES

5.1 INTRODUCTION

This chapter discusses three special features incorporated into
the DCJ11l: cache memory status and control registers, console
ODT, and pipeline processing hardware.

5.2 CACHE MEMORY STATUS AND CONTROL REGISTERS

The DCJ1l contains hardware that allows the user to incorporate
cache memory into his system. This hardware consists of the cache
control register and the hit/miss register. This hardware allows
for a broad spectrum of cache implementations and the user has
considerable flexibility in designing a cache memory scheme to fit
his application. The paragraphs that follow not only describe the
cache memory status and control registers in detail but also
present some general considerations involved in designing cache
memory into a DCJ1l1 based system. A sample cache memory
implementation is - also presented to illustrate a typical
application of the cache memory status and control registers.

5.2.1 Cache Control Register - The cache control register (CCR)
contains information which is used to control the operation of
cache memory. It is accessed by referencing location 17777746.
Only bits 9 and <3:2> of the CCR are interpreted by the DCJ11.
Bits <10:0> are read/write bits. Bits <15:11,8> are always read
as zeroes.

In order for the uninterpreted read/write bits (bits 10, <8:4>,
and <1:0> to be used by external logic, the user must include a
"shadow register"™ (write only) in his DCJ1l design. The shadow
register simply retains a hardware accessible copy of the CCR
information. Although the DCJ1l allows the reading and writing of
CCR<10:0> and the writing of CCR<15:11>, changing bits <15:11>, 8,
<7:4>, and <1:0> will have no hardware effect on the DCJ1l.

CCR bits <15:11> are uninterpreted and always read as zeroes by
the DCJ1l (see sample implementation in Paragraph 5.2.5). The
user typically designs an external register for these bits if they
must be interpreted. The format of the CCR is shown in Figure
5-1.



[ J \ N— A
f RS { I
UNINTERPRETED

(READ AS ZEROES)

UNINTERPRETED
(READ/WRITE)

UNCOND!ITIONAL
CACHE BYPASS

UNINTERPRETED
(READ AS ZERO}"

UNINTERPRETED
(READ/WRITE)

FORCE CACHE MISS

UNINTERPRETED
(READ/WRITE}

MR 11436

*Written as a logic 1 at power-up or when console ODT is started

Figure 5-1 Cache Control Register

5.2.1.1 Unconditional Cache Bypass (R/W) - When bit 9 is set to
1, all memory references access main memory, and all cache hits
are invalidated.

5.2.1.2 Force Cache Miss (R/W) - When either of bits <3:2> is set
to 1, all references are forced to main memory and all cache
activity is suspended. This in effect disables the cache system.

5.2.1.3 Uninterpreted Bits - Bits <15:10>, <8:4>, and <1:0> are
uninterpreted by the DCJ1l. Bits 10, <8:4>, and <1:0> are
read/write bits and bits <15:11> are always read as zeroes.

5,2.2 Hit/Miss Register - The Hit/Miss Register (HMR) indicates
whether the six most recent CPU memory references resulted in
cache hits or cache misses. It 1is accessed by referencing
location 17777752. Refer to Figure 5-2. Bits <15:6> are always
read as zeroes. Bits <5:0> are read-only bits. Bits enter from
the right (at bit 0) and are shifted leftward. A logical one
indicates a cache hit, and a zero indicates a cache miss. This
register is used to help diagnose the cache system.

15 14 13 12 11 10 09 08 07 06 05 00

0 0 0 0 0 0 0 0 0 [¢] e B LOW

MR 8899

Figure 5-2 Hit/Miss Register

5-2



3.2.3 General Operation - Cache memory is typically a high-speed
memory that buffers data between the CPU and main memory. When a
memory access occurs, the system looks for data in .the fast cache
memory first. If found (a hit), the data is read or written to or
from the cache and execution proceeds at the fastest rate. If not
found (a miss), the data must be read from or written to main

memory.

In a write-through cache system a CPU request to write data into
memory causes data to be written to both the cache and to main
memory. This is to insure that both stores are always updated
immediately. PDP-11 systems with cache normally use the
write-through technique. .

Typical hit/miss operations in a write-through cache system are
summarized in Table 5-1.
Table 5-1: Typical Hit/Miss Operations

What Happens In

——————————————————— S . - G - " - - A - . M W w— — —

CACHE MAIN MEMORY
READ .
hit _ no change no change
miss updated no change
WRITE
“hit : updated updated
miss no change updated

In a typical program, WRITEs occur only 10-15%8 of the time and
READs occur 85-90% of the time. Thus, READ misses cause the cache

to be updated.

The I/0 page of physical memory (the ¢top 8K bytes) is not
typically cached. This 1is because the I/0 page contains device
status registers which, when read, must always convey the latest
information.

When a DMA device writes to a cached location, the overwritten
cache entry is typically invalidated. The cache system monitors
DMA transactions to determine if this action is needed.

There are several design parameters that must be considered when
constructing a cache memory, cache size and block size to name but
two. A detailed discussion of cache design is beyond the scope of
this document, but an introduction to the subject is found in
Section VI of the KBl1l-C Processor Manual (EK-KB11C-TM). An 8 KB
direct mapped cache is presented as an implementation example in
Paragraph 5.2.5,

5-3



§,2.,4 Cache Memory In A Multiprocessor Environment - In a
multiprocessor system where each processor has 1its own cache
memory, care must be taken to avoid caching data that was
invalidated by another processor ("stale" data). A simple
software method can prevent this situation. Any shared address
must bypass the cache, i.e., the reference must go to main memory,
and if the address was previously cached, the entry must be
invalidated. The DCJ1l1 provides three bypass mechanisms: an
unconditional bypass in which every reference is bypassed; a
conditional bypass in which bypassing is on a page-by-page basis;
and finally, a selective bypass in which the bypassing is done
during operand references. The unconditional bypass is selected
by setting bit 9 of the Cache Control Register (see Paragraph
5.2.1). The conditional bypass is selected when bit 15 of the
currently selected Page Descriptor Register PDR is set (see
Paragraph 4.5.2). The selective bypass occurs during the operand
references of the instructions used in multiprocessing functions
(TSTSET, WRTLCK and ASRB).

5.2.5 Sample Implementation - The following is a description of
the operation of an 8 Kb direct mapped cache with a block size of
two bytes as implemented on a DCJ1l based system. This is only
one of many possible implementations.

A direct mapped cache is organized such that each physical memory
address 1is associated with a particular "block" of memory in the
cache. In this case we have an 8 KB cache with a block size of
two Dbytes. This means there are 4K blocks in the cache. Each
word in physical memory is associated with one of these 4K blocks.

Consider each physical address as being made up of three parts
(see Figure 5-3). The first part is bit zero. Bit zero specifies
which of the two bytes in a two-byte block is to be accessed. The
next part, bits <12:1>, is called the cache index and specifies
which of the 4K blocks in the cache is to be accessed. The third
part, bits <21:13>, 1is called the cache tag. One cache tag per
block is stored in the cache to uniquely identify physical memory

locations.
21 1312 0100

T v 1 1T 77 r 1 v 17 17 T 7 1T T ¥

PRI WG U WA S ST SR VN SRS VU (T SN T WS TR W S S WS

\ J \ J

CACHE TAG——f ?

CACHE INDEX
BYTE WITHIN BLOCK

MA 11437

Figure 5-3 Physical Address Partitioning for Cache Memory

For example, if the DCJ1l accesses location 10002477, cache
control 1logic (designed by the wuser) looks at the cache tag
-associated with the information currently in cache block number
1237 (bits <12:1>). If this cache tag is 400 (bits <21:13>), the
cache control logic sends both bytes in that block to the DCJ1ll.
Since bit 0 is a 1, the DCJ1ll automatically selects the high byte

5-4



(the low byte is ignored). 1If the stored cache tag is not 400,
the control logic fetches two bytes from memory (10002476 and
10002477), sends 10002477 to the DCJ1l, loads the two bytes into
cache block 1237, and changes the cache tag of that block to 400.

Any location whose cache index is 1237 will be loaded into block
1237 of cache memory. This is the only place the cache control
logic has to look if the DCJ1l accesses the data from a location
whose cache™index is 1237.

Figure 5-4 illustrates a format for each cache block. The 9-bit
cache tag is stored in bits <24:16> and the two bytes of data
which comprise the block are stored in bits <15:0>. Bit 25 is a
Valid Bit which indicates whether or not this cache block contains
valid data. Data would be invalid for example immediately after
power-up, and the cache control logic would clear the valid bit in
this case.

2524 16 16 0807 00

LENNE J BN BEN BN S rrrrrryrrry Vv rirry

nnnnnnnn VI S U S S B S b d L

- 4 ' A
IL J e I J
VALID BIT T

TAG FIELD
DATA BLOCK - BYTE 1
DATA BLOCK - BYTEO

MR 11438

Figure 5-4 Cache Entry

Notice that only the cache tag of a location need be stored in a
cache entry because only the cache tag is required to uniquely
identify a location. The cache index need not be compared because
anything stored in block 1237 (for example) is known to have bits
<12:1> of its address set to 1237.

If desired, cache entries can also include parity information as
shown in Figure 5-5.

282726 181716 0908 07 00

1 rrrrrrv 11 rrrr v 1 rrrr

I NS S S S S N | | S GG S T B S | WO W W T W S

PARITY 2 — f
VALID BIT
TAG FIELD
PARITY 1
DATA BLOCK - BYTE 1
PARITY O
DATA BLOCK - BYTE 0

MR 11430

Figure 5-5 Cache Entry With Parity
The Parity 0 Bit stores parity information for byte 0, the Parity
1 Bit stores parity information for byte 1, and the Parity 2 Bit
stores parity information for the cache tag/valid bit combination.

The Cache Control Register for this example is configured as shown

5-5



in Figure 5-6.

BIT

15 14 13 12 " 10 09 08

T T T T T 7
0 0 0 0 0 0
1 1 1 1 L Z

WRITE WRONG TAG PARITY
BYPASS CACHE
FLUSH CACHE
WRITE WRONG DATA PARITY

FORCE MISS

DISABLE CACHE TRAPS

MR 11440

Figure 5-6 Sample Cache Control Register

NAME

<15:11> Not Used

10

(read as zeroes)

Write Wrong Tag
Parity (read/write)

Bypass Cache
(read/write)

Flush Cache
(read as zero)

Not Used
(read/write)

Write Wrong
Data Parity
(read/write)

FUNCTION

These bits are not used in this
example. The DCJ1ll will ignore
any data written to these bits and
will always read these bits as
zeroes.

This bit, when set, causes the
cache tag parity bit (Parity 2) to
be written with wrong parity when
a cache entry is updated (i.e.
upon CPU read misses and write
hits). This causes a cache tag
parity error on the next access to
a location referenced by the
entry.

This bit, when set, forces all CPU
memory references to go directly
to main memory. Read or write hits
will result in invalidation of
accessed locations in the cache.

Setting this bit causes the entire
contents of the cache to be
declared invalid. Writing a "O0"
into this bit will have no effect.

This bit is not used in this
example.

This bit, when set, causes the
parity bits of the two data bytes
(Parity 0 and Parity 1) to be
written with wrong parity when

5-6



updated (i.e. upon CPU read misses

and write hits). This causes a
cache parity error to occur on the

next access to a location
referenced by the entry.

<5:4> Not Used These bits are not used in this
(read/write) example.

<3:2> Force Miss | These bits, when either is set,
(read/write) force all DCJ11l memory references

to go directly to main memory.
Unlike cache bypasses, force
misses have no effect on cache
entries. Enabling force miss
effectively removes cache memory
from the system.

1 Not Used ' These bits are not used in this
(read/write) , example.

0 Disable Cache Traps This bit, when set, disables cache
(read/write) parity interrupts. When this bit

is cleared, an interrupt occurs
when a parity error is
encountered.

All words read from the cache are checked for parity. A parity
error in the accessed word causes the following CPU responses:

CCR<0> Action

0 Interrupt through vector 114 and force miss.
1 Force miss only.

The CCR is cleared on power-up or by a console start. It |is
unaffected by a RESET instruction.

The cache response matrix for this example would be:



Read

Write

Read bypass

Write bypass

Read forced
miss

Write forced
miss

CPU
Hit | Miss
Read cached|Read memory
data & allocate
cache
Write thru Write
cache to memory
memory
Invalidate Read
cache & memory
read mem
Invalidate Write
cache & memory
write mem
Read Read
memory memory
Write Write
memory memory

na = not applicable

5-8

Hit | Miss
Read Read
memory memory

Invalidate Write
cache & memory
write mem

na na
na na
na na
na na




$.3 CONSOLE ODT

The console octal debugging technique or console ODT allows the
DCJ1l to respond to commands and information entered via a
user-designed console terminal interface. The interface bus uses
addresses 17777560 through 17777566 to communicate with console
ODT. These addresses are generated in the DCJ1l and cannot be
changed. Console ODT is a very useful aid in running and
debugging programs. Communication between the user and DCJ11l is
via a stream of ASCII characters which are interpreted by the
DCJ1l as console commands. These commands are a subset of the
commands used in DIGITAL”s ODT-1l1 software for minicomputers.

5.3.1 Terminal Interface - The minimum optional hardware
requirements for an interface permitting communication with
console ODT are outlined in the paragraphs that follow (these
requirements are met by the DLART DL-compatible asynchronous
receiver/transceiver peripheral chip - DIGITAL Part No.
DC319-aA).

5.3.1.1 Receiver Control/Status Register (RCSR) - The RCSR
(Figure 5-7) must exist at address 17777560 for character input to
console ODT. Console ODT does not execute output bus cycles to
this address; therefore the RCSR only needs to respond to input
bus cycles. System software may affect certain bits, such as
Interrupt Enable (bit 6), but console ODT ignores this.

MR 3902

Figure 5-7 Receiver Control/Status Register (RCSR) - Address 17777560

Bit Description

<15:8> Unused. These bits may be in any state since console ODT
does not use them.

<7> Done flag. After a character is received and exists in
the receiver buffer register (RBUF), the Done flag must
be set to a 1. When the character is read from RBUF
Done flag must be cleared by hardware.

<6:0> Unused. These bits may be in any state since console ODT
does not use them.

5-9



§,3.1.2 Receiver Buffer Register (RBUF) - The RBUF (Figure 5-8)
must exist at address 17777562 for character input to console ODT.
This register only needs to respond to input bus cycles since
console ODT does not execute output bus cycles to this address.
System software operates similarly, but DIGITAL diagnostics may
cause output cycles and thus may not operate properly.

Figure 5-8 Receiver Buffer Register (RBUF) - Address 17777562

Bit _ Description

<15:8> Unused. These bits can be in any state since console
ODT does not use them.

<7:0> ASCII character. These eight bits are read by the
processor and interpreted as a console ODT command.
When bit 7 of RCSR is a 1, the processor reads data
from the RBUF. After the input cycle, the hardware
must clear bit 7 of RCSR to 0.

5.3,1.3 Transmitter Control And Status Register (XCSR) - The XCSR
(Figure 5-9) must exist at address 17777564 for character output
from console ODT. ODT does not execute output bus cycles to this
address; therefore, the XCSR only needs to respond to input bus
cycles. System software may cause output cycles to affect certain
bits, such as Interrupt Enable, but console ODT ignores this.

00

Figure 5-9 Transmitter Control/Status Register (XCSR) - Address 17777564

Bit Description

<15:8> Unused. These bits may be in any state since console ODT
does not use then.

<7> Done flag. In the idle state, this bit is a l indicating
that the XBUF is ready to receive a character. After an
output cycle to the transmitter buffer register (XBUF) by
the processor, this bit-must be cleared to 0 by the
hardware. When the XBUF is ready to receive another
character, the hardware sets this bit to 1.

<6:0> Unused. These bits may be in any state since console ODT
does not use them. Note that these bits may be
meaningful to other DIGITAL interfaces.



5.3.1.4 Transmitter Buffer Register (XBUF) - The XBUF (Figure
5-10) must exist at address 17777566 for character output from
console ODT. This register only needs to respond to output bus
cycles since console ODT does not execute input bus cycles to this
address. System software operates similarly but DIGITAL
diagnostics may cause an input cycle and thus may not operate
properly. -

08 07 00

Figure 5-10 Transmitter Buffer Register (XBUF) - Address 17777566

Bit Description

<15:8> Unused. These bits may be in any state since console
: ODT does not use them. ‘

<7:0> ASCII character. These eight bits are written by the
processor with the ASCII character output by ODT. When
bit 7 of XCSR is a 1, the processor may perform an
output cycle to XBUF.

$5.3.2 Console ODT Operation - Console ODT operates the console
terminal interface in half-duplex mode. Communication between
console ODT and the interface is accomplished via programmed 1I/0
techniques rather than interrupts. When console ODT is outputting
characters using the transmit side of the interface, the receive
side of the interface is not monitored for incoming characters.
Any characters coming in at this time are lost. Console ODT does
not check for error bits in the interface. If another processor
is at the other end of the interface, that processor must operate
within the format of half-duplex transmission. ~No input
characters should be sent until console ODT has finished
outputting.

5.3.2.1 Console ODT 1Initialization - Console ODT operation is
initiated by any of the following:

l. Execution of a HALT instruction in kernel mode (if kernel HALT
is enabled).

2. Assertion of the HALT signal on the system bus. The signal
must be asserted 1long enough so that it is seen by the
processor at the end of the current macroinstruction

3. At‘power-up, if the appropriate power-up option is selected.

Console ODT Input Sequence



The Console ODT entry sequence is as follows:

1. Output <CR><LF> to XBUF.

2. Output the contents of PC in six digits to XBUF.

3. Read and ignore character in RBUF. (May be a program
character.)

4. Output <CR><LF> to XBUF.

5. Output the prompt character, @, to XBUF .

6. Enter a wait loop for input. The Done flag, bit 7 in RCSR, is
tested. If it is 0, the test continues.

7. TIf RCSR bit 7 is a 1, then the low byte of RBUF is read.

5,3.2.2 Console ODT Output Sequence -

Console ODT does the following when it has a character ready for
output:

1. Test XCSR bit 7 (Done flag) and if a 0, continue testing.

2. TIf XCSR bit 7 is a 1, write character to 1low byte of XBUF
(high byte should be ignored by interface).

5.3.3 Console ODT Command Set - The console ODT command set is a
subset of ODT-11 and uses the same command characters. Only
specific characters are recognized as valid inputs; other inputs
invoke a "?" response. The commands are summarized in Table 5-2.

The word "1ocation,* as used in the paragraphs that follow refers

to a memory location, an I/O device register, an internal
processor register, or the processor status word (PS).

5

12



Table 5-2 Console ODT Commands
Command Symbol - Function

Slash n/ Opens the specified
location (n) and outputs
its contents. n is an
octal number.

Carriage Return <CR> Closes an open location.

Line Feed <LF> Closes an open location
and then opens the next
contiguous location.

Internal Register $n or Rn ' Opens a specific processor

Designator register (n). n is an
integer from 0 to 7 or the
character S.

Processor Status S Opens the PS - must follow

Word Designator an $ or R command.

Go G Starts program execution.

Proceed P Resumes execution of a
program.

Binary Dump Control-shift-5 Manufacturing use only.

The parity bit (bit 7) on all input characters is ignored (i.e.,
not stripped) by console ODT. If an input character is echoed,
the state of the parity bit is copied to the output buffer (XBUF).
Output characters internally generated (e.g., <CR>) by ODT have
the parity bit equal to 0. All commands are echoed except for
ASCII codes in the range 0-17 (octal). Where applicable, the
upper- and lowercases of command characters are recognized.

NOTE

In the examples that follow, the response
from the processor is underlined, while
the user’s entry is not. When the user
inputs an address or data, leading zeroes
are not required. The DCJ1l, however,
outputs 8 digit octal addresses and 6
digit octal data words.

$5.3.3.1 / (ASCII 057) Slash - This command is wused to open a
memory location, I/0 device register, internal processor register,
or processor status word and must be preceded by other characters
which specify a 1location. 1In response to /, console ODT prints
the contents of the location (i.e., six characters) and then a
space (ASCII 40). After printing is complete, console ODT waits
for either new data for that location or a valid close command.

5-13



Example: €001000/012525<SPACE>

where:
@ = console ODT prompt character.
001000 = octal location desired by the user

(leading 0s are not required).

/ = command to open and print contents of
location. .

012525 = contents of octal location 1000.
<SPACE> = space character generated by console

oDT.

5.3.3.2 <CR> (ASCII 015) Carriage Return - This command is used
to close an open location. If a location”s contents are to be
changed, the user should precede the <CR> with the new data. If
no change 1is desired, <CR> closes the location without altering

its contents.

Example: @R1/004321<SPACE> <CR> <CR><LF>
' ¢

Processor register Rl was opened and no change was desired so the
user 1issued<CR>, In response to the <CR>, console ODT printed
<CR><LF>@.

Example: @R1/004321<SPACE> 1234 <CR> <CR><LF>
@

—

In this case the user desired to change R1l, so new data, 1234, was
entered before issuing the <CR>. Console ODT deposited the new
data in the open location and then printed <CR><LF>@.

Console ODT does not directly echo the <CR> entered by the user
but instead prints a <CR>, followed by an <LF>, and @.

5.,3.3.3 <LF> (ASCII 0l1l2) Line Feed - This command is wused to
close an open location and then open the next contiguous location.
Memory locations and processor registers are incremented by 2 and
1 respectively. If the PS is open when a <LF> is issued, it is
closed and a <CR><LF>@ is printed; no new location is opened. If
the open location’s contents are to be changed, the new data
should precede the <LF>. If no data is entered, the location is
closed without being altered.

Example: 8R2/123456<SPACE> <LF> <CR><LF>
R3/054321<SPACE>

In this case, the user entered <LF> with no data preceding it. 1In

5-14



response, console ODT closed R2 and then opened R3. When a user
has the last register, R7, open, and issues <LF>, console ODT
opens the beginning register, RO. ‘

Example: @R7/000000<SPACE> <LF> <CR><LF>
R0/123456<SPACE>

Unlike with most other commands, console ODT does not echo the
<LF>. Instead it prints <CR>, then <LF>, so that terminal
printers operate properly. In order to make this easier to
decode, console ODT does not echo ASCII characters in the range 0
- 17 (octal).

5.3.3.4 $ (ASCII 044) Or R (ASCII 122) 1Internal Register

Designator - Either character when followed by a register
number, 0 to 7, or PS designator, S, will open that specific
processor register.

The $ character is recognized to be compatible with ODT-11l. The R
character was introduced because it can be conveniently typed with
one key stroke and because it is an easily remembered symbol for a

register. :

Example: @$0/000123<SPACE>

or

@R7/000123<SPACE> <LF»>
§0/054321<§EAQE>

If more than one character is typed after the R or §, console ODT
uses the last character typed as the register designator.

5.3.3.5 S (ASCII 123) Processor Status Word - This designator |is
for opening the PS (processor status word) and may be employed
only after the user has entered an R or $ register designator.

Example: @RS/100377< > 0 <CR> <CR><LF>

NOTE
The trace bit (bit <4>) of the PS cannot
be modified by the user. This is done so
that PDP-11 program debugging utilities
(e.g., ODT-11l), which use the T bit for
single-stepping, are not accidentally
harmed by the user.

If the user issues a <LF> while the PS is open, the PS is closed
and ODT prints <CR><LF>@. No new location is opened in this case.

5-15



§,3,3.6 G (ASCII 107) Go - This command is used to start program
execution at a location entered immediately before the G. This
function is equivalent to the LOAD ADDRESS and START switch
sequence on other PDP-1l consoles.

Example: 8200G<NULL><NULL>

The console ODT sequence for a G, after echoing the command
character, is as follows.

1. Print two nulls (ASCII 0). This is intended to prevent the G
character from getting flushed during the bus initialization
sequence that follows, assuming a double-buffered UART chip is
used in the console terminal interface.

2. Load R7 (PC) with the entered data. If no data is entered, 0
is used. (In the above example, R7 is set to 200, and that is
where program execution begins.)

3. The PS, MMRO0<15:13,0>, MMR3, PIRQ, CPU Error Register, Memory
System Error Register, Cache Control Register, and Floating
Point Status Register are cleared to zero.

4. The cache, if present, is flushed (if so implemented).
5. The system bus is initialized by the processor.

6. The service state is entered by the DCJ1ll. Any outstanding
service requests are processed,. If the bus HALT signal is
asserted, the processor reenters the console ODT state. This
feature is used to initialize a system without starting a
program (R7 is altered).

5.3.3.7 P (ASCII 120) Proceed - This command is wused to resume
execution of a program and corresponds to the CONTINUE switch on
other PDP-11 consoles. No programmer-visible machine state is
altered using this command.

Example: ap

Program execution resumes at the address pointed to by R7. After
the P is echoed, the DCJ1ll 1immediately fetches the next
instruction. After the instruction 1is executed, outstanding
interrupts, if any, are serviced. If the HALT bus signal is
asserted, it is recognized at the end of the instruction, and the
DCJ1l enters the console ODT state. Upon entry, the content of
the PC (R7) 1is printed. In this fashion, the user can
single-instruction step through a program and obtain a PC "trace"
on the terminal.



5.3.3.8 Control-Shift-s (ASCII 023) Binary Dump - This command is
used for manufacturing test purposes and is not a normal user
command. It is described here to explain the processor’s response
if accidentally invoked. It is intended ¢to more efficiently
display a portion of memory compared to using the "/" and <LF>
commands. The protocol is as follows.

l. After a prompt character, console oDT receives a
control-shift-S command and echoes it.

2. The host system at the other end of the serial line must send
two 8 bit bytes which console ODT interprets as a starting
address. These two bytes are not echoed.

The first byte specifies starting address <15:08> and the
second byte specifies starting address <07:00>. Address bits
<21:16> are always forced to be 0; the dump command is
restricted to the first 32K words of address space.

3. After the second address byte has been received, console ODT
outputs ten bytes to the serial line starting at the address
previously specified. When the output is finished, console
ODT prints <CR><LF>@.

If a user accidentally enters this command, it is recommended
in order to exit from the command that two @ characters (ASCII
100) be entered as a starting address. After the binary dump,
an @ prompt character is printed. ’

5.3.4 Address Specification - All 1I/0O addresses (17760000 to
17777777) must be entered by the user with all 22 bits specified.
For example, if a user desires to open the RCSR of the console
serial interface he must enter 17777560, not 177560, or 777560.

5.3.4.1 General Registers - Whenever RO-R5 are referenced in
console ODT, they access the general register set currently
specified by PS bit 11 (PS<1ll>). If a program operating in
general register set zero (PS<1ll> = 0) is halted and a general
register is opened, register set zero is accessed. Similarily, if
a program 1is operating in register set one, references to RO-RS
access register set one.

If a specific register set is desired, PS<11> must be set by the
user to the appropriate value, and then the RO through RS commands
can be used. If an operating program has been halted, the
original wvalue of PS<11l> must be restored in order to continue
execution. '
Example: PS = 000000

@R4/052525<SPACE> <CR> <CR><LF>

R4 in register set zero has been opened.

5-17



@RS/000000<SPACE> 4000 <CR> <CR><LF>
@R4/177777<SPACE> <CR> <CR><LF>
@RS/004000<SPACE> 0 <CR> <CR><LF>

ep

In this case, R4 in register set one was desired. The PS was
opened, and PS<ll> was set to 1 (register set one). Then R4 was
examined and closed. The original value of PS<ll> was restored,
and the program was continued using the P command.

5.3.4.2 Stack Pointers - Whenever R6 is referenced in console
ODT, it accesses the stack pointer specified by the PS current
mode bits (PS<15:14>). If a program operating in kernel mode
(PS<15:14> = 00) is halted and R6 is opened, the kernel stack
pointer is accessed. Similarly, if a program is operating in
supervisor or user mode, R6 accesses the supervisor or user stack
pointers. ‘

If a specific stack pointer is desired, PS<15:14> must be set by
the user to the appropriate value and then the R6 command can be
used. If an operating program has been halted, the original value
of PS<15:14> must be restored in order to continue execution.

Example: PS = 140000
@R6/123456<SPACE> <CR> <CR><LF>

The user mode stack pointer has been opened.

@RS/140000<SPACE> 0 <CR> <CR><LF>

@R6/123456<SPACE> <CR> <CR><LF>
@RS/000000<SPACE> 140000<CR> <CR><LF>
ep )

In this case, the kernel mode stack pointer was desired. The PS
was opened, and PS<15:14> were set to 00 (kernel mode). Then R6
was examined and closed. The original value of PS<15:14> was
restored, and then the program was continued using the P command.

5.3.4.3 Floating Point Accumulators - The floating point
accumulators cannot be accessed from console ODT. Only floating
point instructions can access these registers.

5.3.5 Entering Octal Digits - When the wuser 1is specifying an
address, console ODT will use the last eight octal digits if more
than eight have been entered. When the user is specifying data,
console ODT will use the last six octal digits if more than six
have been entered. The user need not enter leading 0s for either
address or data; console ODT forces 0s as the default. If an odd
address is entered, console ODT responds to the error by printing
?<CR><LF>@.



5.3.6 ODT Timeout - If the user specifies a nonexistent address
or causes a parity error, console ODT responds to the error by

printing ?<CR><LF>e@.

5.3.7 1Invalid Characters - Console ODT will recognize upper- or
lowercase characters as commands. Any character that console ODT
does not recognize during a particular sequence is echved (except
for ASCII characters in the range 0 - 17 (octal)), and console ODT
prints ?<CR><LF>@.

5-19



5.4 DCJ1l PIPELINE PROCESSING

The DCJ1l gets much of its performance from its prefetch and
predecode mechanisms. The primary benefit of prefetch and
predecode is that memory references are overlapped with internal
operations, and the need for explicit instruction fetch and decode
cycles is minimized. The prefetch and predecode operations are
performed automatically by the DCJ1l chip and cannot be altered by
the user.

A primary function of the prefetch mechanism is to £fill four
registers with information and replenish thé registers as
required. These four registers, the virtual program counter
(VPC), the physical program counter (PPC), the prefetch buffer
(pB), and the instruction register (IR) are collectively referred
to as the prefetch pipeline. The contents of registers in the
beginning of the pipeline are used to determine the contents of
registers further down the pipeline. When the pipeline is filled,
the prefetch mechanism is said to be in steady state. Four

microcycles are required to fill an empty pipeline. Figure 5-11
illustrates the process of filling the pipeline.

Microcycle 1 Microcycle 2 Microcycle 3 Microcycle 4

VPC <-- PC PPC <-- MMU(VPC) PB <-- M[PPC] IR <-- PB
VPC <-- VPC + 2 PPC <-- MMU(VPC) PB <=-- M[PPC]
VPC <=-= VPC + 2 PPC <-- MMU(VPC)
VPC <-- VPC + 2

PC <=- PC + 2
MMR2 <-- PC

Figure 5-11 Pipeline Filling Process

In microcycle 1, the VPC is is simply set to the same value as the
PC. In microcycle 2, the VPC is sent through the MMU and the
resulting physical address is loaded into the PPC. The VPC is
then incremented by 2. At this point we have a valid vPC and PPC
and the pipeline is said to be synchronized. Sometimes while
executing a macroinstruction, the pipeline is synchronized but not
filled. 1In that case, only microcycles 3 and 4 need be performed
for the next macroinstruction.

In microcycle 3, the word in memory addressed by the PPC is
fetched into the PB. The PPC 1is updated with the relocated
(mapped) VPC and the VPC is incremented again. In microcycle 4,
the PB is sent to the IR and is decoded as the next
macroinstruction (note that the DCJ1l asserts PDRC at this time)..
The new contents of the PB are fetched from the memory location
referenced by the PPC. The PPC is again updated with the
relocated (mapped) VPC and the VPC is updated (incremented) once
again. Also during microcycle 4, the original PC is loaded into
MMR2 (if MMRO<15:13> = 000) and is incremented by 2.

In steady state (i.e., when microcycle 4 is complete), the IR
contains the macroinstruction being executed, the PB contains the
data from the memory location pointed to by the PC, the PPC
contains the physical address of the next word to be prefetched,

5-20



and the VPC contains the incremented value of the PC.

Once in steady state, a stream of macroinstructions that operate
only on registers may be executed at the rate of one per
microcycle (i.e., microcycle 4). While one instruction is being
executed, the next one is being decoded, and the following one is
being prefetched into the PB. As illustrated in Figure 5-11
during microcycle 4: the contents of the prefetch buffer are
loaded into the IR, the word addressed by the PPC is 1loaded into
the PB, the VPC is relocated and loaded into the PPC, and the VPC
is incremented by 2. This maintains the steady state, allowing
the next macroinstruction to be executed in the next microcycle.
Note also that the DCJ1ll bus is kept busy 100% of the time.

The instructions that operate on immediate data and a register
also make maximum use of the prefetch mechanism. At steady state,
a stream of these macroinstructions execute in two microcycles
(microcycles 3 and 4). During microcycle 3, the data in the PB is
moved to a scratch register. During microcycle 4, the operation
is performed. In both cycles, the steady state of the prefetch
mechanism is maintained by prefetching the next instruction stream
word. The DCJ1ll bus is again kept busy 100% of the time.

The prefetch pipeline is refilled after a power-up sequence or if
a prefetch fault occurs. Prefetch faults occur when the PS, CCR,
PC, or any of the memory management registers are written. A
prefetch fault invalidates only the PB. This means that the
pipeline remains synchronized and can be refilled in two
microcycles.

5.4.1 Pipeline Flow Example - Consider the following example
program:

Virtual Symbolic Octal

‘Address Representation Code
1000 MOV R2,R3 010203
1002 BIS #1,R3 052703
000001
1004 ADD R1,R3 060105
1006 CLR RO . 005000
1012 ADD R3,R0 060300

The flow of information through the pipeline occurs as shown in
Table 5-3.



Table 5-3 Pipeline Fléw

Pipeline

Register Microcycle
n _ n+l n+2 n+3 n+4 n+5
PC 1002 1004 1006 1010 1012 1014
IR MOV BIS BIS ADD CLR ADD
(010203) (052703) (052703) (060105) (005000) (060300)
PB BIS 000001 ADD CLR ADD *
(052703) (060105) (005000) (060300)

PPC  MMU (1004) MMU (1006) MMU(1010) MMU(1012) MMU(1014) MMU (1016)
vPC 1006 1010 1012 1014 1016 1020

* Instruction at location 1014

Note that the example starts at microcycle n, by which ¢time the
prefetch pipeline has been filled (i.e., the pipeline is in steady
state). All the instructions in the example execute in one
microcycle except the BIS instruction, which executes in two

microcycles.



: CHAPTER 6
ADDRESSING MODES AND BASE INSTRUCTION SET

6.1 INTRODUCTION

-

The first part of this chapter is divided into six major sections:

o0 Single-Operand Addressing -- One part of the instruction word
specifies the registers; the other part provides information
for locating the operand.

o Double-Operahd Addressing -- One part of the instruction word
specifies the registers; the remaining parts provide
information for locating two operands.

o Direct Addressing =-- The operand is the content of the
selected register. '

0 Deferred (Indirect) Addressing -- The contents of the selected
register is the address of the operand.

o Use of the PC as a General-Purpose Register -- The PC 1is
different from other general-purpose registers in one
important respect. Whenever the processor retrieves an
instruction, it automatically advances the PC by 2. By
combining this automatic advancement of the PC with four of
the basic addressing modes, we produce the four special PC
modes -- immediate, absolute, relative, and relative-deferred.

0 Use of the Stack Pointer as a General-Purpose Register --
General-purpose registers can be used for stack operations.

The second part of this chapter describes each of the instructions
in the DCJ11l instruction set.

6.2 ADDRESSING MODES
Data stored in memory must be accessed and manipulated. Data
handling is specified by a DCJ1l instruction (MOV, ADD, etc.),
which usually specifies the:

o Function to be performed (operation code).

o0 General-purpose register to be used when locating the source
operand, and/or destination operand (where required).

o0 Addressing mode, which specifies how the selected registers
are to be used. :

A large portion of the data handled by a computer 1is structured

6-1



(in charaéter strings, arrays, lists, etc.). The DCJ11 addressing
modes provide for efficient and flexible handling of structured
data. .

A general-purpose register may be used with an instruction in any
of the following ways.

1. As an accumulator -- The data to be manipulated resides in the
register.

2. As a pointer -- The contents of the register is the address of
an operand, rather than the operand itself. .

3. As a pointer that automatically steps through memory locations
- Automatically stepping forward through consecutive
locations is known as autoincrement addressing; automatically
stepping backwards is known as autodecrement addressing.
These modes are particularly useful for processing tabular or

array data.

4. As an index register -- In this instance, the contents of the
register and the word following the instruction are summed to
produce the address of the operand. This allows easy access
to variable entries in a list.

An important DCJ1l feature, which should be considered with the
addressing modes, is the register arrangement.

o Two sets of six general-purpose registers (RO--RS and
RO“-=R57)

o A hardware stack pointer (SP) register (R6) for each processor
mode (kernel, supervisor, user)

o A program counter (PC) register (R7)

Registers RO--R5 and RO“--R5” are not dedicated to any specific
function; their use 1is determined by the instruction that is

decoded.

o They can be used for operand storage. For example, the
contents of two registers can be added and stored in another

register.

o They can contain the address of an operand or serve as
pointers to the address of an operand.

o They can be wused for the autoincrement or autodecrement
features.

o They can be used as index registers for convenient data and
program access.

The DCJ11 also has instruction addressing mode combinations that
facilitate temporary data storage structures. These can be used
for convenient handling of data that must be accessed frequently.
This is known as stack manipulation. The register that keeps
track of stack manipulation is known as the stack pointer (SP).

6-2



Any register can be used as a stack pointer under program control;
however, certain instructions associated with subroutine 1linkage
and interrupt service automatically use register R6 as a "hardware
stack pointer." For this reason, R6 is frequently referred to as
the SP.

o The stack pointer (SP) keeps track of the latest entry on the
stack. ’

o The stack pointer moves down as items are added to the stack
and moves up as items are removed. Therefore, the stack
pointer always points to the top of the stack.

o0 The hardware stack is used during trap or interrupt handling
to store information, allowing an orderly return to the
interrupted program.

Register R7 is used by the processor as its program counter (PC).
It is recommended that R7 not be used as a stack pointer or
accumulator. Whenever an instruction is fetched from memory, the
program counter is automatically incremented by two to point to
the next instruction word.

6.2.1 S8ingle-Operand Addressing - The instruction format for all
single-operand instructions (such as CLR, INC, TST) is shown in
Figure 6-1.

15 06 05 04 03 02 00
[ T T T v L T T T T - Y T T T
MODE Rn
I i | I b ) 1 L
| N A J
OP CODE DESTINATION ADDRESS

MR 3438

Figure 6~1 Single-Operand Addressing

Bits <15:6> specify the operation code that defines the type of
instruction to be executed.

Bits <5:0> form a 6-bit field called the destination address
field. The destination address field consists of two subfields:

©0 Bits <5:3> specify the destination mode. Bit 3 is set to
indicate deferred (indirect) addressing.

0 Bits <2:0> specify which of the 8 general-purpose registers is
to be referenced by this instruction word.

6.2.2 Double-Operand Addressing - Operations that imply two
operands (such as ADD, SUB, MOV, and CMP) are handled by
instructions that specify two addresses. The first operand is
called the source operand; the second is called the destination
operand. Bit assignments in the source and destination address
fields may specify different modes and different registers. The
instruction format for the double operand instruction is shown in

6-3



Figure 6-2.

15 12 11 10 09 08 06 05 04 03 02 00

Y 1 T L] 1 T 1 T T T ¥

MODE MODE Rn

. 1 1 n A 1 1 3 I

OP CODE

SOURCE ADDRESS DESTINATION ADDRESS

Figure 6-2 Double-Operand Addressing

MR 5459

The source address field is used to select the source operand (the

first operand).
the second operand and the result.

ADD

contents (destination operand) of location B.

The destination is used similarly, and locates
For example, "the instruction
B adds the contents (source operand) of location A to the

After execution, B

A,

will contain the result of the addition and the contents of A will
be unchanged.
Examples in this paragraph and the rest of the chapter use the

following

CLR

CLRB

INC

INCB

COM

COMB

sample DCJ11 instructions. (A complete listing of the
DCJ11l instructions appears in Paragraph 6.3.)
Mnemonic Description Octal Code
Clear. (Zero the specified destination.) 0050DD
Clear byte. (Zero the byte in the specified 1050DD
’destination.)
Increment. (Add one to contents of the 0052DD
destination.)
Incremenf byte. (Add one to the contents of 1052DD
the destination byte.)
Complement. (Replace the contents of the 0051DD
destination by its logical complement;
each 0 bit is set and each one bit is
cleared.)
Complement byte. (Replace the contents of 1051DD
the destination byte by its logical
complement; each 0 bit is set and each
1 bit is cleared.)
Add. (Add the source operand to the 06SSDD

ADD

DD

0
w0
han

()

destination operand and store the result
at the destination address.)

destination field (six bits)
source field (six bits)
contents of



6.2.3 Direct Addressing - The following summarizes the four basic
modes used with direct addressing.

Direct Modes (Figures 6-3 to 6-6)

Assembler
Mode Name Syntax Function
0 Register Rn Register contains operand.
INSTRUCTION COPERAND

LR YT

Figure 6-3 Mode ( Register

: Assembler
Mode Name Syntax Function
2 Autoincrement (Rn)+ Register is used as a pointer
to sequential data and then
incremented.
INSTRUCTION ADDRESS OPERAND

+2 FOR WORD,
+1 FOR BYTE

MRA.5461

Figure 6-4 Mode 2 Autoincrement

Assembler
Mode Name Syntax Function
4 Autodecrement = (Rn) Register is decremented and
then used as a pointer.
INSTRUCTION - ADDRESS -2 FOR WORD o OPERAND
-1 FORBYTE

MR 5462

Figure 6-5 Mode 4 Autodecrement

: Assembler
Mode Name Syntax Function
6 Index X (Rn) Value X is added to (Rn) to

produce address of operand.
Neither X nor (Rn) is modified.

INSTRUCTION ADDRESS
_L,;@— orenanD
X

MR 5463

Figure 6-6 Mode 6 Index

6-5



6.2.3.1 Register Mode - With register mode any of the general
registers may be used as simple accumulators, with the operand
contained in the selected register. Since they are hardware
registers (within the processor), the general registers operate at
high speeds and provide speed advantages when used for operating
on frequently accessed variables. The assembler interprets and
assembles instructions of the form OPR Rn as register mode
operations. Rn represents a general register name or number and
OPR is used to represent a general instruction mnemonic.
Assembler syntax requires that a general register be defined as
follows.

RO = %0 (% sign indicates register definition)
Rl = %1
R2 = %2, etc.

Registers are typically referred to by name as RO, Rl, R2, R3, R4,
R5, R6, and R7. However, R6 and R7 are also referred to as SP and

PC, respectively.

OPR Rn

Register Mode Examples (Figures 6-7 to 6-9)

1. Symbolic Octal Code Instruction Name
INC R3 005203 Increment

Operation: Add one to the contents of general-purpose register
R3'

15 06 05 04 03 02 00
T ¥ T T T T T AJ T T : T T
0 0 0 0 1 0 1 0 1 0 0 01 0 0 1 L T
. L 4 A . . 1 A A A | REGISTER
A\ A hd _—
|
OP CODE (INC(0052)) DESTINATION FIELD I
|
|
RO !
|
R1 |
R2 :
R3 e/
R4 '
RS
R6 (SP)
R7 (PC)
Figure 6-7 INC R3 Increment uA-sae?
2. Symbolic Octal Code Instruction Name
ADD R2, R4 060204 Add

Operation: Add the contents of R2 to the contents of R4.

6-6



BEFORE AFTER

R2 000002 R2 000002

R4 000004 R4 000006

MA-5468

Figure 6-8 ADD R2,R4 Add
3. Symbolic Octal Code Instruction Name

COMB R4 105104 Complement byte
Operation: 1°s complement bits <7:0> (byte) in R4. (When general
registers are used, byte instructions operate only on bits <7:0>;
i.e., byte 0 of the register.)
BEFORE AFTER

R4 022222 R4 022155

MA-5469

Figure 6-9 COMB R4 Complement Byte

6.2.3.2 Autoincrement Mode [OPR (Rn)+] - This mode (mode 2)
provides for automatic stepping of a pointer through sequential
elements of a table of operands. It assumes the contents of the
selected general-purpose register to be the address of the
operand. Contents of registers are stepped (by one for byte
instructions, by two for word instructions, always hy two for R6
and R7) to address the next sequential location. The
autoincrement mode 1is especially useful for array processing and
stack processing. It will access an element of a table and then
step the pointer to address the next operand in the table.
Although most useful for table handling, this mode is completely
general and may be used for a variety of purposes.

OPR (Rn)+

Autoincrement Mode Examples (Figures 6-10 to 6-12)

1. Symbolic Octal Code Instruction Name
CLR (RS5)+ | 005025 Clear

Operation: Use contents of RS as the address of the operand.
Clear selected operand and then increment the contents of RS by

two. BEFORE AFTER
ADDRESS SPACE REGISTER ADDRESS SPACE REGISTER
20000 005025 R5 030000 20000 005025 RS 030002
]
30000 111116 30000 000000

MR.-5464

Figure 6-10 CLR (R5)+ Clear
2, Symbolic Octal Code Instruction Name

CLRB (RS5)+ 105025 Clear byte
6-7



Operation: Use contents of R5 as the address of the operand.
Clear selected byte operand and then increment the contents of RS
by one. BEFORE AFTER
ADDRESS SPACE REGISTER ADDRESS SPACE REGISTER
20000 | 105025 RS | 030000 20000 | 105025 Rs | 030001
J
T r T
30000 1| 16 30000 LA 000
30002 | 30002 !
MR 5465
Figure 6-11 CLRB (R5)+ Clear Byte
3. Symbolic Octal Code Instruction Name
ADD (R2)+,R4 062204 Add
Operation: The contents of R2 are used as the address of the
operand, which is added to the contents of R4. R2 is then
incremented by two.
BEFORE AFTER
ADDRESS SPACE REGISTERS ADDRESS SPACES REGISTERS
10000 | 062204 R2 | 100002 10000 | 062204 R2 100004
J
Ra | 010000 Ra | 020000
100002 010000 100002 010000
MR 5470
Figure 6-12 ADD (R2)+,R4 Add
6.2.3.3 Autodecrement Mode [OPR-(Rn)] - This mode (mode 4) Iis
useful for processing data in a list in reverse direction. The
contents of the selected general-purpose register are decremented
(by one for byte instructions, by two for word instructions) and
then used as the address of the operand. The choice of
postincrement, predecrement features for the DCJ11l were not
arbitrary decisions, but were intended = to facilitate
hardware/software stack operations.
OPR- (Rn)
Autodecrement Mode Examples (Figures 6-13 to 6-15)
1. Symbolic Octal Code Instruction Name
INC - (RO) 005240 Increment
Operation: The contents of RO are decremented by two and used as

the address of the operand. The operand is incremented by one.

6-8



BEFORE AFTER
ADDRESS SPACE REGISTERS ADDRESS SPACE REGISTER
1000 006240 RO 017776 1000 005240 RO 017774
_
r
17774 000000 17774 000001
MR 5466
Figure 6-13 INC -(R0O) Increment
2.. Symbolic Octal Code Instruction Name
INCB - (RO) 105240 Increment byte
Operation: The contents of RO are decremented by one and then
used as the address of the operand. The operand byte is increased
by one. BEFORE AFTER
ADDRESS SPACE REGISTER ADDRESS SPACE REGISTER
1000 105240 RO 017776 1000 105240 RO 017775
J
17774 | 000 ; 000 17774 | 001 i 000
17776 ; 17776 E
Figure 6-14 INCB =-(R0O) Increment Byte HAean
3. Symbolic Octal Code Instruction Name
ADD - (R3),RO 064300 ‘Add

Operation:

used

as a

The contents of R3 are decremented by two

pointer to an operand (source), which is added to the

contents of RO (destination operand).

6.2.3.4 Index Mode
contents
word following the

10020

77774

77776

of

BEFORE

ADDRESS SPACE

064300

000050

RO

R3

REGISTER

000020

077776

Figure 6-15 ADD -(R3),R0 Add

the

address of the operand.

in

the

table.

instruction

[OPR X(Rn)] = In
selected general-purpose register, and an index
summed to form the
of the selected register may

AFTER
ADDRESS SPACE REGISTER
10020 064300 RO 0000070
R3 077774
]
77774 000050
77776
WA 5472
this mode (mode

word,
The contents

are

structures.
access
Index addressing instructions are of the form OPR

6--9

be used as a base for calculating a series of addresses,
allowing random access to elements of data
selected register can then be modified by program to



X(Rn), where X is the indexed word located in the memory location
following the instruction word and Rn 1is the selected
general-purpose register.

OPR X (Rn)

Index Mode Examples (Figures 6-16 to 6-18)

1. Symbolic Octal Code Instruction Name
CLR 200 (R4) 005064 Clear
000200

Operation: The address of the operand is determined by adding 200
to the contents of R4. The operand location is then cleared.

BEFORE AFTER
ADDRESS SPACE REGISTER ADORESS SPACE REGISTER

1020 005064 R4 romooo ] 1020 005064 R4 001000 ]
1022 000200 1022 000200
1024 1000 1024

+200

1200

v

1200 17nn 1200 000000
1202

CLEYIE

Figure 6-16 CLR 200(R4) Clear

2. Symbolic Octal Code Instruction Name
COMB 200 (R1) 105161 Complement byte
000200

Operation: The contents of a location, which are determined by
adding 200 to the contents of Rl, are 1°s complemented (i.e.,
logically complemented).

BEFORE AFTER
ADDRESS SPACE REGISTER ADDRESS SPACE REGISTER
1020 105161 R1 [ 017777 J 1020 105161 RY 012777
1022 000200 1022 000200
017777
+200
020177
Al L
20176 o1 | oo 20176 166 | 000
+ 4
20200 ! 20200 !

L LA

Figure 6-17 COMB 200 (Rl) Complement Byte

3. Symbolic Octal Code Instruction Name
ADD 30(R2),20(RS5) 066265 Add
000030
000020

Operation: The contents of a location, which are determined by

6-10



adding 30 to the contents of R2, are added to the contents of a
location that is determined by adding 20 to the contents of RS5.
The result is stored at the destination address, that is, 20 (R5) .

BEFORE AFTER
ADDRESS SPACE REGISTER ADDRESS SPACE REGISTER
1020 066265 R2 001100 1020 066265 R2 001100
1022 000030 1022 000030
1024 000020 RS 002000 1024 000020 RS 002000
1130 000001 1130 000001
2020 000001 2020 000002
1100 2000
+30  +20
1130 2020

MA 5475

Figure 6-18 ADD 30(R2),20(R5) Add

6.2.4 Deferred (Indirect) Addressing - The four basic modes may
also be wused with deferred addressing. Whereas in register mode
the operand 1is the contents of the selected register, in
register-deferred mode the contents of the selected register is
the address of the operand.

In the three other deferred modes, the contents of the register
select the address of the operand rather than the operand itself.
These modes are therefore used when a table consists of addresses
rather than operands. The assembler syntax for indicating
deferred addressing is @ [or () when this is not ambiguous]. The
following summarizes the deferred versions of the basic modes.

Deferred Modes (Figures 6-19 to 6-22)

Assembler
Mode Name Syntax Function
1 Register-
deferred @Rn or (Rn) Register contains the address
of the operand.
INSTRUCTION ADDRESS OPERAND

MR 5476

Figure 6-19 Mode 1 Register-Deferred

Assembler
Mode Name : Syntax Function
3 Autoincrement-

Deferred - @(Rn)+ Register is first used as a

6-11



pointer to a word containing
the address of the operand and
then incremented (always by
two, even for byte
instructions).

OPERAND

—]

MRA.5477

INSTRUCTION +{ ADDRESS ADDRESS

Figure 6-20 Mode 3 Autoincrement-oéferred

Assembler
Mode Name Syntax Function
5 Autodecrement-
deferred @- (Rn) Register is decremented (always
by two, even for byte
instructions) and then used as
a pointer to a word containing
the address of the operand.
INSTRUCTION ADDRESS -2 ADDRESS OPERAND
t

MR.-5478

Figure 6-21 Mode 5 Autodecrement-Deferred

Assembler
Mode Name Syntax Function
7 Index~-deferred @X(Rn) Value X (stored in a word

following the instruction) and
(Rn) are added; the sum is used
as a pointer to a word
containing the address of the
operand. Neither X nor (Rn) is
modified.

INSTRUCTION ADDRESS
—’E(D—ﬂ ADDRESS OPERAND

MR.-5479

Figure 6-22 Mode 7 Index-Deferred

The following examples illustrate the deferred modes.
Register-Deferred Mode Example (Figure 6-23)
Symbolic Octal Code Instruction Name
CLR @RS 005015 Clear
6-12



Operation:

BEFORE
ADDRESS SPACE

1677 RS

AFTER

REGISTER ADDRESS SPACE REGISTER

001700 1677 RS 001700

1700 000100 1700 000000

MRA-5480

Figure 6-23 CLR @R5 Clear

Autoincrement-Deferred Mode Example (Mode 3) (Figure 6-24)

Symbolic Octal Code Instruction Name
INC @(R2)+ 005232 Increment
Operation: The contents of R2 are used as the address of

address of the operand. The operand is increased by one;
contents of R2 are incremented by two.

BEFORE AFTER
ADDRESS SPACE REGISTER ADDRESS SPACE REGISTER
R2 010300 R2 010302
1010 000025 1010 000026
1012 1012
10300 001010 10300 001010

MA-8407

Figure 6-24 1INC @(R2)+ Increment

Autodecrement-Deferred Mode Example (Mode 5) (Figure 6-25)

Symbolic Octal Code
COM @- (RO) 005150
Operation: The contents of RO are decremented by two and

used as the address of the address of the operand.
1°s complemented (i.e., logically complemented).

BEFORE AFTER
ADDRESS SPACE REGISTER ADDRESS SPACE REGISTER
10100 012345 RO 010776 10100 165432 RO 010774
10102 10102
10774 010100 10774 010100
10776 10776 -

Figure 6-25 COM @-(R0) Complement

6-13

MR 5482

The contents of location specified in R5 are cleared.

the
the

then
The operand is



Index-Deferred Mode Example (Mode 7) (Figure 6-26)

Symbolic Octal Code Instruction Name
ADD Q1000 (R2),R1 067201 Add
001000

Operation: 1000 and the contents of R2 are summed to produce the
address of the address of the source operand, the contents of
which are added to the contents of Rl; the result is stored in
R1.

BEFORE AFTER
ADDRESS SPACE REGISTER ADDRESS SPACE REGISTER
1020 067201 R1 001234 1020 067201 R1 001236
1 1022 001000
1022 001000 R2 000100 R2 000100
1024 1024
1050 2 1050 000002
1100 001050 1100 001060
1000
+100
1100

MR 5482

Figure 6-26 ADD @1000(R2),Rl Add

6.2.5 Use Of The PC As A General-Purpose Register - Although
register 7 1is a general-purpose register, it doubles in function
as the program counter for the DCJ1l. Whenever the processor uses
the program counter to acquire a word from memory, the program
counter is automatically incremented by two to contain the address
of the next word of the instruction being executed or the address
of the next instruction to be executed. (When the program uses
the PC to locate byte data, the PC is still incremented by two.)

The PC responds to all the standard DCJ11 addressing modes.
However, with four of these modes the PC can provide advantages
for handling position-independent code and unstructured data.
When utilizing the PC, these modes are termed immediate, absolute

(or immediate-deferred), relative, and relative-deferred. The
modes are summarized below.

Assembler
Mode Name Syntax Function
2 Immediate #n Operand follows instruction.
3 Absolute e#A Absolute address of operand

follows instruction,



6 Relative A Relative address (index value)
follows the instruction.

7 Relative-
deferred eA Index value (stored in the word
after the instruction) is the
relative address for the
address of the operand.

When a standard program is available for different users, it |is
often helpful to be able to load it into different areas of memory
and run it in those areas. The DCJ1l can accomplish the
relocation of a program very efficiently through the use of
position-independent code (PIC), which is written by using the PC
addressing modes. If an instruction and its operands are moved in
such a way that the relative distance between them is not altered,
the same offset relative to the PC can be used in all positions in
memory. Thus, PIC usually references locations relative to the
current location,

The PC also greatly facilitates the handling of unstructured data.
This is particularly true of the immediate and relative modes.

6.2.5.1 Immediate Mode [OPR N,DD] - Immediate mode (mode 2) |is
equivalent in use to the autoincrement mode with the PC. It
provides time improvements for accessing constant operands by
including the constant in the memory location immediately
following the instruction word.

Q?R #n,DD

Immediate Mode Example (Figure 6-27)

Symbolic Octal Code Instruction Name
ADD #10,R0 062700 Add
000010

Operation: The value 10 is located in the second word of the
instruction and is added to the contents of RO. Just before this
instruction is fetched and executed, the PC points to the first
word of the instruction. The processor fetches the first word and
increments the PC by two. The source operand mode is 27
(autoincrement the PC). Thus, the PC is used as a pointer to
fetch the operand (the second word of the instruction) before it
is incremented by two to point to the next instruction.

BEFORE AFTER
ADDRESS SPACE REGISTER ADDRESS SPACE REGISTER
1020 062700 \RO 000020 1020 062700 RO 000030

1022 000010 PC 1022 000010 PC

1024 1024 ’///

Figure 6-27 ADD #10,R0 Add

MR.-5484

6-15



6.2.5.2 Absolute Addressing [OPR @ A] - This mode (mode 3) is the
equivalent of immediate-deferred or autoincrement-deferred using
the PC. The contents of the location following the instruction
are taken as the address of the operand. Immediate data is
interpreted as an absolute address (i.e., an address that remains
constant no matter where in memory the assembled instruction is
executed).

OPR @#A

Absolute Mode Examples (Figures 6-28 and 6-29)

1. Symbolic Octal Code Instruction Name
CLR €41100 005037 Clear
001100
Operation: Clear the contents of location 1100.
BEFORE AFTER
ADDRESS SPACE ADDRESS SPACE
20 005037 20 005037
22 | oo1100 PC 22 | 001100 pC
24 _______r//
1100 177777 1100 000000
1102 1102

MR-S485

Figure 6-28 CLR @#1100 Clear

2. Symbolic Octal Code Instrucfion Name
ADD @#2000,R3 063703 Add
002000

Operation: Add contents of location 2000 to R3.

BEFORE AFTER
ADDRESS SPACE REGISTER ADDRESS SPACE REGISTER

20 063703 R3 000500 20 063703 R3 001000

22 002000 PC 22 002000 PC
24 24 rf

2000 000300 2000 000300

MA-5406

Figure 6-29 ADD @#2000 Ad4d



6.2.5.3 Relative Addressing [OPR A Or OPR X(PC)] - This mode
(mode 6) is assembled as index mode using R7. The base of the
address calculation, which is stored in the second or thir