Addr essi ng Modes

PROG- 1

The MPUG800 mi croprocessor has five addressing nodes available to the

progr amver .

1. I medi at e:

2. Direct:

In this node of addressing, the operand is contained in the
next nenory |ocation. For exanple, to execute a "l oad
accurmul ator with the hex number 55" instruction, it would

| ook Iike this in menory.

Menory Location Binary Contents Hex Contents

100 10000110 86 (LDA A 1MV

101 01010101 55 (DATA)

86 (in hex) is the LDA A imred. instruction. 55 (in hex) is
the data. The result after the above is the hex nunber 55

has been | oaded into the A accunul ator.

In this node of addressing the address of the operand is
contained in the next nenory |ocation. This enables one to

directly address the first 256 bytes of nenory (0-255=256

Bytes). As an exanple, to | oad accunmulator A with the
contents of address 67 (in hex), consecutive nenory

| ocations would | ook like this.

Menory Location Binary Contents Hex Contents

100 10010110 96 (LDA A DR

101 01100111 67(Addr ess t hat
cont ai ns dat a)

96 (in hex) is the LDA A Direct instruction

67 (in hex) is the address where the data is to be fetched
from So, whatever is in location 67 would be | oaded into

accunul ator A

3. Ext ended:

4,

| ndexed:

PROG- 2

This node of addressing is used to address nenory | ocations
above 255. In this node of addressing, the next nmenory

| ocati on contains the higher order 8 bits of the address,
and the 2nd nenory | ocation contains the | ower order 8 bits
of the address. For exanple, to load the A accumulator with
the contents of nenory |ocation hex 4057, the consecutive

menory | ocations would | ook like this.

Menory Location Binary Contents Hex Contents

100 10110110 B6(LDA A EXT)
101 01000000 40(ADDR HI GH)
102 01010111 57(ADDR LOW

B6(in hex) is the LDA EXT instruction. 40 (in hex) is the
nmost significant half of the address where the data is
stored and 57 (in hex) is the least significant half of the
address where the data is stored. After the above
execution, whatever is in location 4057 will be |oaded into

accunul ator A

I n-this node of addressing, the address contained in the
next menory |location is added to the contents of the index
registers lower 8 bits to forma new "effective address”

If there was a carry, it is added to the upper 8 bits of
the index register. The new "effective address"” is the

| ocation in nmenory which contains the operand. The
"effective address” is held in a tenporary address register
such that the contents of the index register are not
destroyed. As an example, if the index register contains
hex 14, and a | oad accunul ator A from hex |ocation 21

i ndexed by the contents of the index register is executed,

5. Rel ative:

PROG- 3

the address of 21 (located in the next menory |ocation) is
added to the contents of the index register (14) to forma

new "effective address" of hex 35.

Menory Location Binary Contents Hex Contents

100 10100110 A6(LDA A | ndexed)

101 00100001 21

A6(in hex) is the LDA I NDEXED instruction

21 (in hex) contains part of the address of the
instruction. To the address of 21 nust be added the
contents of the index register to forma new "effective
address" hex of 35 (21 + 14). After the above execution
the contents of nenory l|location hex 35 will be | oaded into

accunul ator A

In this nmode of addressing, programcontrol is transferred
to sonmepl ace other than the next sequential menory

| ocation. Transfer in this node, is limted to 125 nenory

| ocations back fromthe present |ocation or 129 |ocations
ahead of the present location. Since this is a 2 byte
instruction in that it takes two menory |ocations, transfer
is always referenced fromthe next instruction which the
MPU woul d execute if it did not transfer control (or
relative to the present count of the programcounter). Al
transfers back fromthe present |ocation are given in 2's
compl enent (represented in hex) fromthe (present |ocation

+ 0002).

Al transfers forward are given in the actual count forward
from (the present nenory |location + 0002) to the menory

| ocati on where programcontrol is transferred. The actua

PROG- 4

count forward is given in straight binary (represented in

hex) .

TRANSFER FORWARD FROM PRESENT LOCATI ON
Assune it is desired to branch fromthe present |ocation at 0100 + 0002

(in hex) to location 0147 (in hex). First, it should be verified that the branch is
not beyond the all owabl e range of 199 |ocations fromthe present location. 45 (in
hex) = 5X16° + 4x16' =5+64- 69 (decimal) Therefore 45 hex is within our allowable
range. At nenory |location 0100, a BRA instruction is stored. Menory | ocation 0101

contains the count of nmenory | ocations which will be branched over starting from

0102.
Fi nal Destination = 0147
Present Location + 0002 = 0102
Nunmber of Locations to Branch over = 45

Menory Location Binary Contents Hex Contents

100 00100000 20 (BRA)

101 01000101 45 (No. of locations to branch over)

20 (in hex) is the BRA (Branch Al ways) instruction.

45 (in hex) is the nunber of |ocations which will be branched over starting with
0102 Therefore, the next instruction the MPU will execute will be |located at 102 +

45 or hex location 0147.

TRANSFER SACK FROM PRESENT LOCATI ON
Assune it is desired to branch fromthe present |ocation of 0100 back to

menory | ocation 0090. This is acconplished in a simlar manner as the forward
branch, except the nunber of locations is given in 2's conplenent (represented in
hex) fromthe present |ocation + 0002. The 2's conplenent formplaces a 1 in bit 8

which, in effect tells the processor to branch back rather than forward.

PROG- 5

Present Location + 0002 = 0102

Fi nal Destination = 0090

Nurmber of Locations to Branch back over = 72

Nunber of Locations to Branch back over = 01110010 (72 hex)
1's conpl enent = 10001101

2' s conpl enment = 10001110 (8E)

Menory Location Binary Contents Hex Contents

100 00100000 20 (BRA)
101 10001110 8E (No. of locations to branch back
over)

20 (in hex) is the BRA (Branch Always) instruction. 8E is the nunber of |ocations
(in 2's conplenment) which will be branched back over starting from 0102. (present
| ocation + 0002 which is the count in the programcounter). Therefore, the next

instruction the MPU will execute will be |located at nenory | ocation 0090 (hex)

PROG- 6

Sanpl e Program

Pr obl em Wite a program in nmachine | anguage and in M6800 source
| anguage, to add the deci mal nunbers 25, 35, 50, and 17.
Store the answer at RAM | ocation OA Assenble the source
program and conpare the assenbled programw th the machine

| anguage program

Sol uti on: 3519 = 43g = 100011y = 2344

50109 = 62g = 110010 = 3244

1710 = 21g = 010001, = 11464

2510 = 31g = 0110015 = 1944
Menory(in HEX) Machi ne
Locati on Language Comrent
000B 10000110 (86) LDA A 1MW
0ooC 00011001 (19) DATA TO BE PUT IN A
000D 11000110 (Ce LDA B | WM
000E 00100011 (23) DATA TO BE PUT IN B
000F 00011011 (1B) ADD THE A & B REAQ STER
0010 11000110 (CB) LDA B | MM
0011 00110010 (32) DATA TO BE PUT IN B
0012 00011011 (1B) ADD THE A&B REQ STER
0013 11000110 (CB) LDA B I MW
0014 00010001 (11) DATA TO BE PUT IN B
0015 00011011 (1B) ADD THE A&B REQ STER
0016 10010111 (97) STORES A I N LOCATI ON

0017 00001010 (0A) 0A

LIZT PROG- 7

FON 3330 PHEMIX 0S-29-74

i N
100 HAM =
105 0OrRG
110 TEMF
130 LDR

1440 LR B 3t

150 ESH o ssac SAME PROGRAM

o AR WRITTER 1N MPY
130 LDA B 2321 MNEMONIC coDIvG

130 HERA

z00 STA +® WOICATES IMMEOIATE
205 EMD 7 8 INDIcATES HEX NUMaeR

RERDY IN DICAT
FUM MPCAZM MO0 Q ATES O<TAL MOMBEQ

I
—
m
= 4
mn

n
r|A]

0
-]
L

MFCAHEM n3:31]

MOTOROLA ZFDs INMC. OWMZ AMD I:Z REZFOMIIELE FOR MRCAZM
COFYRIGHT 1374 EBY MOTOROLA IMC

MOTOROLA MFU CROZZ AZIEMELER . RELERZE 1.0

EMTEFR =1 FILEMNAME

v ROM4
FRSE 1 HMF 0S-29-74 03:32.00
N
ooioo MHAM ZHMF
00105 000n aris 14 M?\) M N E ”\OU \ L
o110 aooR o0t TEMF FME 1 COoLED PROGRAM
D0LE0 000k 28 19 LK A #2%5
Q0140 0000 CE 23 LDA E #35 ASSEMRLED BY
No1S0 000F L1E HER
O01ED G010 CE IS LIR B 832 f TIME SHRARING
0170 0018 1E REHR ASS Le
oolso a0n1s Ce 1t LR B #a21 EHB Q
goiso o01s tE HEH
aozon oole 37 0R ZTH A TEMF
nazns EHD S

IWMEBOL THELE

TEMF DO0R
EMTER =1 FILEMAME
T EOF

ERRLN

(]
(]

FUNMINSG TIME: 9.1 ZECE 1-0 TIME : 5.2

PROG- 8
Sanpl e Program Loading and Storing Data

Wite a programfor the follow ng sequence.

1. Begin with data 7F and load it into the A accunul ator then store the data in
menory | ocation 50.

2. Fromlocation 50, |oad the data into the B accunul ator then store it extended
in menory | ocation 0113.

3. Rel oad data into the A accunulator fromthe extended nenory | ocation and
store the data in location 6A then Junp back to the beginning.

Assume this programw |l be used in a mcroconputer systemw th Hex Ram addresses

000 t hrough 200 (512 bytes) and ROM addresses 800 through FFF (2048 bytes). Al
nunbers are in Hex relation.

Sour ce Program

EDLIL 122 03EET 02 0esFS

100 MAM LTRE1L
131 OFT MEM
1oz ORG FeR :
10z TEMF EME 1
10% 0ORG F0200

110 ZTART LDA A #%7F ZTART OF PrROGFEAM
120 =ZTA A ESO

120 LDA B ESO HIDEEZZ OF DATHA
1490 ZTH B 0113

S0 LDA R g0ilz

120 =ZTA AR TEMF

190 IMF ZTRRT

zonn Mo

Assenbl ed Program

o100 MNAM LTF1

notod arFT MEM

ooioz 00eH Ok tEH

ao10z oner ooot TEMF EME i

OO10S Q=00 18] 3E] F 0200

ao1tn o=on 26 7 ZTART LDA A #37F ZTARRT OF FPROGRAM
noizo ognz 37 50 ZTH A 350

o130 0204 D S0 LR B &S0 ADDREZEZ OF DATHAH
o140 0308 F7 0113 STHR B E0113

n01S0 0203 Be 01132 LA B E0112

00130 030C 97 &R STA R TEMP

00150 030E 7E 0800 JMP STRRT

Na200 MON

PROG- 9

Sanpl e Program Subtracting absol ute value of two nunbers

Pr obl em Cal culate a quantity Z which will be the absolute value of Y
subtracted fromthe absolute value of W If the result is |ess
than or equal to zero, set Z equal to zero.

Z=|W - [Y if |[W >]Y]
Z=0if W <[V
Sour ce Program
100 NAM ABS
110 OPT MEM
120 ORG O
130 WRWB 1
140 Y RVMB 1
150 Z RVMB 1
160 ORG $0500
170 LDA A W
180 BGE Z1 IS WPGCSI Tl VE
190 NEG A W WAS NEG MAKE PCS.
200 71 LDA B Y
210 BGE Z2 IS Y PCSI Tl VE
220 NEG B Y WAS NEG. MAKE PGS,
230 Z2 SBA SUBTRACT Y FROM W
240 BGT Z3 IS Z PCSI Tl VE
250 CLR A RESULT WAS ZERO OR NEG
260 Z3 STA A Z ANSVER
270 MON
Assenbl ed Program
onioon HAM RBZ
no1Lon arT MEM
ooiEn onoo arn 0
noLsg o000 o0l] FME i
ao140 0001 0001 Y EMEB 1
oo1so o002 000l = EME 1
Do1e0 NS00 OrG EFOS00
QO170 OS00 S3€ a0 LDH H
guoisn oS0z 2c ool BE 1 IZ W POSITIVE
0190 0504 40 HEG A W WAS NMEG. MAKE FPOZ.
go2on 09ns e 21 =21 LR B ¥
no210 0so07 2C 01 EGE oe Iz 7 POSITIVE
nozen 503 50 HEGS B W WAT HEGy MRKE POE.
o220 0SOR 10 e ZBH ZUBTRACT Y FROM U
o240 0S0R 2E 01 BT 23 1z 2 POSITIVE
00250 0500 4F CLR A RESULT WRE ZERO OF MNEG.
anzs0 050E 97 02 23 3STR R 2 AMZWER

00270 MON

YES

NC

YES

Y—p B

YES

A-B—p A

NO

0 =—pA

PROG- 10

PROG- 11

CYCLE BY CYCLE DESCRIPTION OF SAMPLE PROGRAM
o1 L

e 1 MICROSECOND

$2 —
r
CYCLE 0 1 2 3 4 5 6 7 8 9
LDA A ADD A TO STA A IN LOC 4028
WITH 2 3
D538
ROM ADDRESS ROM CONTENT I NSTRUCTI ON
0018 86 LDA A #2
0019 02
001A 8B ADD A #3
001B 03
001cC F6 STA A $402B
001D 40
001E 2B

| NDI CATES | MVEDI ATE MODE OF ADDRESSI NG

$ | NDI CATES A HEX NUMBER

NOTE: ADDRESS 402B MUST BE A RAM PI A, OR AC A

DESCRI PTI ON OF PROGRAM The A register is |loaded with the nunmber 2. Then the nunber
3 is added to the 2 in the Aregister with the result of 5

left inthe Aregister. The 5 in the Aregister is then
stored in | ocation 402B

PROG- 12
Cycle By Cycle Description of Sanple Program

Cycl e Descri pti on

0 The program counter is assumed to be set at 0018.

1 The program counter is gated onto the Address Bus (AO0-Al5) and the
read/ wite (RRW line is put in a high state corresponding to a read
condition. This results in ROV address 0018 be accessed and the contents
of this address (86) being |oaded into the instruction register (IR). The
program counter is then increnmented and becones 0019.

2 The byte "86" in the IRis decoded and interpreted to be a load A
i mediate (LDA AIMV) instruction. Simultaneously, the programcounter is
gated onto the Address Bus and the RRWIline is set high corresponding to
a read condition. This accesses ROM address 0019 with the contents of
this address (02) being put on the Data Bus (DO-Dr7). Since the
instruction was decoded to be a LDA A imediate, the "02" is |oaded into
the A register. The program counter is then increnmented and becones 001A.

3 The sequence in (1) is repeated except ROM address 00lA is accessed
resulting in 8B being |loaded into the instruction register. The program
counter is increnented to 001B

4. The sequences in (2) is repeated except the instruction is decoded to be
an ADD A imedi ate. Thus, the data "03" is added to the A register giving
aresult inthe Aregister of "05". The programcounter is increnented to
001C.

5 The sequences in (1) is repeated which results in F6 being | oaded into
the instruction register. The program counter is increnented to 001D

6 The instruction register is decoded and determned to be a STA A
extended. This causes the MPU to interpret the next two sequentia
| ocations in menory (00l D & O01E) as a 16 bit address with 001D t he nost
significant and OOl1E the L.S. half of the address. Sinmultaneously, the
nunber in ROM address 001D is read by the MPU and saved the program
counter is increnented to O0lE

7 The contents of ROM address O0lE (2B) is read by the MPU and saved. The
MPU now has a full 16 bit address saved of 402B

8 The extended address of 402E is gated onto the address bus register.
9 Address 402B is accessed and the RRWIline is put in a |low state,

corresponding to a wite. The data in the Aregister is then gated onto
the data bus and stored in | ocation 402B

PROG- 13

Sanmple Program Miltiply Routine #1

Thi s handout docunents the procedures followed to solve a typical problemusing the

M6800 software and software aids. The problemwas the nmultiplication of two unsigned
ei ght bits nunbers.

The objective was to show the general method involved in using the Mdtorola

Cross Assenbler and Sinulator to assist the programer. The chart below illustrates
the steps foll owed:

PROBLEM DESCRI PTI ON
FLOW CHART

MNUEMONI C CCDI NG
ASSEMBLY

SI MULATI ON (VERI FI CATI ON)

THI S PROGRAM | S FOR | LLUSTRATI ON ONLY.
IT IS NOT THE MOST EFFI CI ENT MJLTI PLY
ROUTINE. IT IS SHOAN ONLY AS AN EXAMPLE
OF PROGRAMM NG TECHNI QUES.

PROG- 14

Subroutine "MJULT" will rmultiply two unsigned 8 bit nunbers (NUML & NUM2) and store
the 16 bit result in locations ANS1 (Least significant 8 bits) and ANS2 (Mbst
significant 8 bits). The algorithmused can be best expl ained by an exanpl e:

10000001 (Mul tiplicand) NUML
11111111 (Mul tiplier) NUMR
10000001
1000001
1/ 000001
10{ 00001
100{ 0001
1000|001
10000| 01
100000] 1
1000000/ 01111111
ANS2 ANS1

1 ANS2 is generated by shifting the nultiplicand one bit to the right and
then exam ning the nmost significant bit of the multiplier--if it is a
"1", the nultiplicand is added to ANS2. The multiplier is then shifted
one bit to the left and the procedure (1) is repeated. This is done
seven tinmes to generate the seven terns of ANS2. No carry bit is
possi bl e fromthese additions.

2 ANSI is generated by examining the |east significant bit of the
multiplier-if it is a "1" the nultiplicand is added to ANSI. The
multiplicand is then shifted left one bit and the nmultiplier is
shifted right one bit. The procedure (2) is repeated eight tines to
generate the eight terms of ANSI. If a carry occurs after any of
t hese additions, one is added to ANS2.

MULT
CINUMT j=p & Ci{NUM2|-m=B
Q== AMST D= ANS2
O-a=C 7=

A = NUM1A

0—=n

ROR MNUM1A

CINUM1A) + A
- A

A—p ANS2

=X

CIMNUMT)= 0
A= NUMTA
0= A
CINUMZ|—mB

YY2

D=
ROR NUM1A

ASL B
K=T=X

MO

YY3 k

D=
ROR B

CINUMIA} + A
-4

YES

ANSZ + 18w ANS

ASL NUM1A
K] =i

A=E=aNS

PROG- 15

SOURCE LI STI NG

LMULT 09: 06 PHENI X 06/ 12/ 74

50
60
70

95 *
96 *

100
110
120
130
140
145
146
190
195
196
200
210
220
230
240
250
260
270
280
290
300
310
320
330
340
350
360
370
380
390
400
410
420
430
440
450
453
456
460
470
480
490
500
510
600

NAM AMULT
CRG 0O
OPT MEM

ANS1 RMB 1
ANS2 RMB 1
NUML RMB 1
NUMZ RMB 1
NUMLA RMB 1

*
*

ORG 1000
*

*

MULT LDA A NUML
LDA B NUm2
CLR ANS1
CLR ANS2
CLC
LDX #7
STA A NUMLA
CLR A
RCOR NUMLA

YY1l TST B
BPL YY2
ADD A NUMLA

YY2 CLC
RCOR NUMLA
ASL B
DEX
BNE YY1
STA A NUMLA
LDX #8
LDA A NuML
STA A NUMLA
CLR A
LDA B Nuwe

YY3 CLC
RCR B
BCC YY4
ADD A NUMLA
BCC YY4
I NC ANS2

YY4 ASL NUMLA
DEX
BNE YY3
STA A ANS1
RTS
MON

READY

; NUML=MULTI PLI ER
; NUM2=MULTI PLI CAND

; LOOP COUNT

; SET COND. CCDES ACC. TO B
yCHECK FOR A1 INBIT 7
; OVERFLOW NOT PCSSI BLE

; CONTI NUE UNTI L X=0

; LOOP COUNT

;| F CARRY, | NCREMENT ANS2

; CONTI NUE UNTI L X=0

 FINISHED, EXIT TO MAIN

PROG- 16

PAGE

00050
00060
00070
00095
00096
00100
00110
00120
00130
00140
00145
00146
00190
00195
00196
00200
00210
00220
00230
00240
00250
00260
00270
00280
00290
00300
00310
00320
00330
00340
00350
00360
00370
00380
00390
00400
00410
00420
00430
00440
00450
00453
00456
00460
00470
00480
00490
00500
00510
00600

1 AMULLT

0000

0000
0001
0002
0003
0004

03E8

03ES8
03EA
03EC
03EF
03F2
03F3
03F6
03F8
03F9
03FC
03FD
O03FF
0401
0402
0405
0406
0407
0409
040B
040E
0410
0412
0413
0415
0416
0417
0419
041B
041D
0420
0423
0424
0426
0428

0001
0001
0001
0001
0001

96 02
D6 03
7F 0000
7F 0001
oC

CE 0007
97 04
4F

76 0004
5D

2A 02
9B 04
oc

76 0004
58

09

26 F3
97 04
CE 0008
96 02
97 04
4F

D6 03
oC

56

24 07
9B 04
24 03
7C 0001
78 0004
09

26 EF
97 00
39

SYMBOL TABLE:

ANS1
NUM2
STOP

0000

0003 YY1l

ANS2

06/ 12/ 74

*
ANS1
ANS2
NUML
NUM2
NUMLA
*

MULT

YY2

YY3

YY4

0001
03FC

RUNNI NG Tl ME: 69. 4 SECS

09: 08. 00

NAM AMULT
ORG 0

OoPT MVEM
RvVB 1

RvVB 1

RvVB 1

RvVB 1

RvB 1

CRG 1000
LDA A NuML
LDA B Nuwe
CLR ANS1
CLR ANS2
CLC

LDX #7
STA'A NUMLA
CLR A

ROR NUMLA
TST

BPL YY2
ADD NUMLA
CLC

ROR NUMLA
ASL

DEX

BNE YY1l
STA' A NUMLA
LDX #8
LDA A NuML
STA'A NUMLA
CLR A

LDA B Nuwe
CLC

RCR B

BCC YY4
ADD NUMLA
BCC YY4

I NC ANS2
ASL NUMLA
DEX

BNE YY3
STA ANS1
RTS

MON

MULT O3ES8
YY2 0401

/O TIME: 26.1 SECS

PROG- 17

ASSEMBLY LI STI NG

; NUML=MULTI PLI ER
; NUM2=MULTI PLI CAND

; LOOP COUNT

; SET COND. CODES ACC. TO B
yCHECK FOR A1 INBIT
; OVERFLOW NOT PCSSI BLE

; CONTI NUE UNTI L X=0

; LOOP COUNT

; | F CARRY, | NCREMENT ANS2

;CCNTINUE UNTI L X=0

; FINISHED, EXIT TO MAI N

NUMLA 0004

PROG- 18

MULTI PLY SUBROUTI NE #2

This subroutine nultiplies two eight bit unsigned binary nunbers. The
product of the two eight bit nunbers is formed by shifting the multiplier one bit
to the right and checking for a one or zero. If a one is present, the multiplicand

is added to the product (answer).

The multiplicand is then shifted one bit to the left. This has the effect
of multiplying the multiplicand by two. The nultiplier is again shifted one bit to
the right and the shifted bit checked for a one or zero. If it is a one, the
shifted multiplicand is added to the product. The process is repeated until the
mul tiplier has no nore ones remai ning. When no nore ones remain in the nultiplier

the problemis finished and the product is the final product.

Exanpl e
Multiply 170109 X 510 = 8501¢
17010 = AA16
5 = 0516
1010 1010 Mul tiplicand (M
0000 0101 Mil tiplier (N)
‘K\\ This one requires the multiplicand M
to be added to product.
1010 1010 M
10 1010 10 4 x M This one requires the nultiplicand shifted
right twice (4 x M to be added to the
3 5 2 pr oduct .

Since all remaining higher bits of the
multiplier are zero, the problemis
AA1g X 515 = 35215 = 85010 fini shed.

FLOW CHART OF MJLTI PLY ROUTI NE #2

CLEAR
TEMP. RAM
LOCATI ONS

IS
LSB OF
MULTI PLER

YES

SET

|

ADD
MULTI PLI CAND
SHI FT NC TO ANSVEER
MULTI PLI ER

RIGHT ONE BI'T

T

SHI ET
MULTI PLI CAND
LEFT ONE BI T

T e

YES

PROG- 19

PROG- 20

CMULT 12/ 05/ 74

100 NAM CMULT

110 OPT MEM
120***
130*REV002 12-5-74 BAI NTER

140*

150* TH S SUBROUTI NE MULTI PLI I ES TWD 8 BI T BYTES.
160* THE MJULTI PI CAND IS STORED I N BI TE NB1.

170* THE MULTIPLIER I S STORED IN BI TE NB2.

180* THE RESULT IS STORED I N BYTE ANS2 AND ANS1.
190* ANS2. |S THE UPPER BI TE OF THE RESULT.

200* ANS1. IS THE LONER BI TE OF THE RESULT.
210***
220*

230 ORG O

240*

250 NB1A RVMB 1 *SH FT MJULTI PLI CAND STORE.

260 NB1 RMB 1 *MJLTI PLI CAND

270 NB2 RMB 1 *MJLTI PLI ER

280 ANS2 RMB 1 *UPPER BYTE OF RESULT

290 ANS1 RMB 1 *LONER BYTE OF RESULT

300~

410 ORG $10

320*

330 MULT CLR A

340 STA A ANS2

350 STA A ANS1

360 STA A NB1A

370 LDA A NB2 *NB2=MJLTI! PLI ER

380 BRA LOOP1

390 LOOP2 ASL NB1 *SHI FT MJLTI PLI CAND LEFT.

400 ROL NB1A *NB1A=UPPER BYTE OF MJLTI PLI CAND
410 LOOP1 LSR A *SH FT MJLTI PLI ER RI GHT

420 BCC NOADD *SH FT AND DON T ADD

430 LDA B NB1 *ADD SH FTED MULTI PLI CAND-

440 ADD B ANS1 *TO ANS1 AND ANS2

450 STA B ANS1
460 LDA B NB1A

470 ADC B ANS2 * ANS2=UPPER BYTE OF RESULT
480 STA B ANS2

490 TST A

500 NCADD BNE LOOP2 *START SHI FTI NG AGAI N.

510 END RTS *FI' NI SHED! ! !

520 MON

00100
00110
00120
00130
00140
00150
00160
00170
00180
00190
00200
00210
00220
00230
00240
00250
00260
00270
00280
00290
00300
00310
00320
00330
00340
00350
00360
00370
00380
00390
00400
00410
00420
00430
00440
00450
00460
00470
00480
00490
00400
00410
00420

0000

0000
0001
0002
0003
0004

0010

0010
0011
0013
0015
0017
0019
001B
001E
0021
0022
0024
0026
0028
002A
002C
002E
0030
0031
0033

4D
26
39

03
04
00
02
06
00
00

oD
01
04
04
00
03
03

E8

SYMBOL TABLE

ANS1
MULT

0004
0010

01
00

ANS2

NB1

PROGRAM STOP AT 0O

USED 20.24 UNI TS

PROG- 21

NAM CMULT
OPT MVEM

khkkhkhkkhhhdhhhdhhhhhdhhhdhhhdhhhdhddhhdhdhrhddhdhhddrdhrddddrdddddddrdrx*

*REV0O02 12-5-74 BAI NTER

*

* TH'S SUBRCUTI NE MULTIPLITES TWD 8 BI' T BYTES

* THE MULTIPI CAND | S STORED | N BI TE NBL.
* THE MULTIPLIER |'S STORED I N BI TE NB2.
* THE RESULT |'S STORED I N BYTE ANS2 AND ANSL.
* ANS2. |'S THE UPPER BI TE OF THE RESULT.
* ANS1. |'S THE LOWER BI TE OF THE RESULT.
EE IR S bk S I S S S R R S b Sk S S S Sk S o S S R Rk I S S S S S I
*
RGO
*
NBIA RVMB 1 *SHI FT MULTI PLI CAND STORE.
NB1 RVB 1 * MULTI PLI CAND
NB2 RVB 1 *MULTI PLI ER
ANS2 RMB 1 *UPPER BYTE OF RESULT
ANSI RMB 1 *LONER BYTE OF RESULT
*
ORG $10
*
MLT CLR A
STA A ANS2
STA A ANSL
STA A NBIA
LDA A NB2 *NB2=MULTI PLI ER
BRA LOOPL
LOOP2 ASL NBL *SHI FT MULTI PLI CAND LEFT.
ROL NBIA *NBLA=UPPER BYTE OF MULTI PLI CAND
LOOPL LSR A *SHI FT MULTI PLI ER RI GHT
BOCC ~ NOADD *SHI FT AND DON T ADD
LDA B NBL * ADD SHI FTED MULTI PLI CAND-
ADD B ANSL *TO ANS1 AND ANS2
STA B ANSL
LDA B NBLA
ADC B ANS2 * ANS2=UPPER BYTE OF RESULT
STA B ANS2
TST A
NOADD BNE ~ LOOP2 *START SHI FTI NG AGAI N.
END RTS *FI NI SHED! ! !
MON

0003 END 0033 LOOP1 0021 LOOP2 001B
0001 NB1A 0000 NB2 0002 NCADD 0031

PROG- 22

Pl A POLI NG ROUTI NE #1

The following routine illustrates one of the various techni ques of
determ ni ng which Pl A has generated an interrupt. Recall that each PIA has an A
side and a B side which may cause the IRQline to go | ow thus generating an
interrupt. All the PIAinterrupt lines are tied together and connected to the one
interrupt input pin (IRQ of the MPU. Consequently, when an interrupt is generated,
sonme bit 6 or bit 7 of a PIAis set. The only way to determ ne where the interrupt
came fromis to poll bit 6 and bit 7 of each PIA control register to see if it is a

"1" (thus an interrupt).

This routine polls the control registers of two PIA's. It reads the
contents of each control register and executes the BM instruction which
effectively checks to see if bit 7 is set. If bit 7 is not set, a ROL A instruction
is executed which shifts bit 6 into bit 7 thus permitting use of the BM
instruction again. Once a set control bit is detected, it branches to a subroutine
to service that particular interrupt. After servicing the interrupt, an RT
instruction is executed which causes the processor to return to whatever it was

doi ng before the interrupt.

F

ow Chart for PIA #1 Poling Routine

READ
FI RST
Pl A
YES
NC
READ SHI FT
NEXT LEFT ONE
PI A BI'T

PROG- 23

SERVI CE ROUTI NES

(CR7 SET)
PIALIAC ROUT 1
PIAIBC ROUT 3
Pl A2AC ROUT 5
PIA2BC ROUT 7

SERVI CE ROUTI NES
(CR6 SET)

Pl A1AC RCUT

2
Pl A1BC RQUT 4
Pl A2AC ROUT 6
Pl A2BC ROUT 8

NO

Source Program for PIA #1 Poling Routine

EDU
100
110
120
130
140
150
200
210
220
230
240
250
260
270
280
290
300
310
320
330
340
350
360
370
380
390
400
410
420
430
440
450
460
470
480
490
500
510
520
530
540

12: 09EST
NAM POLL
OPT MEM
Pl ALAC EQU $4005
Pl ALBC EQU $4007
Pl A2AC EQU $4009
Pl A2BC EQU $4008
ORG $100

PCLL LDA A PI A1AC

BM ROUT1

RCL A

BM ROUT2

LDA A PI A1BC
BM ROUT3

RCL A

BM ROUT4

LDA A PI A2AC
BM ROUTS

RCL A

BM ROUT6

LDA A PI A2BC
BM ROUT7

RCL A

BM ROUT8

RTI
RQUT1 NOP *THI S
RTI
RQUTZ NOP *THI S
RTI
RQUT3 NOP *THI S
RTI

RQUT4 NOP *THI S
RTI
RQUT5 NOP *THI S
RTI
ROUT6 NOP *THI S
RTI
RQUT7 NOP *THI S
RTI
ROUT8 NOP *THI S
RTI

MON

IS

IS

IS

IS

IS

IS

IS

IS

02/ 07/ 75

Pl A1IAC

Pl A1IAC

Pl A1BC

Pl A1BC

Pl A2AC

Pl A2AC

Pl A2BC

Pl A2BC

CB1

CB2

CB1

CB2

SERVI CE

SERVI CE

SERVI CE

SERVI CE

SERVI CE

SERVI CE

SERVI CE

SERVI CE

RQUTI NE

RQUTI NE

RQUTI NE

RCUTI NE

RCUTI NE

RCUTI NE

RCUTI NE

ROUTI NE

PROG- 24

Assenbl ed Program for

PI A #1 Pol i ng Routi ne

00100
00110
00120
00130
00140
00050
00200
00210
00220
00230
00240
00250
00260
00270
00280
00290
00300
00310
00320
00330
00340
00350
00360
00370
00380
00390
00400
00410
00420
00430
00440
00450
00460
00470
00480
00490
00500
00510
00520
00530
00540

4005
4007
4009
4008
0100
0100
0103
0105
0106
0108
010B
010D
010E
0110
0113
0115
0116
0118
011B
011D
O01l1E
0120
0121
0122
0123
0124
0125
0126
0127
0128
0129
012A
012B
012C
012D
012E
012F
0130

B6
2B
49
2B
B6
2B
49
2B
B6
2B
49
2B
B6
2B
49
2B
3B
01
3B
01
3B
01
3B
01
3B
01
3B
01
3B
01
3B
01
3B

4005
1C

1B
4007
18

17
4009
14

13
4008
10

Pl ALIAC
Pl A1BC
Pl A2AC
Pl A2BC

POLL

RAUT1

RQUT2

ROUT3

RQUT4

ROUTS

RQUT6

RQUT7

RQUT8

OPT
EQU
EQU
EQU

LDA
BM

BM
LDA
BM
BM
LDA
BM
BM
LDA
BM

BM
RTI

RTI
RTI
RTI
RTI
RTI
RTI
RTI

RTI

> » » » » > >» >

POLL
MVEM
$4005
$4007
$4009
$4008
$100
Pl A1IAC
RAUT1

ROUT2
Pl A1BC
RQUT3

RQOUT4
Pl A2AC
ROUTS

RQOUT6
Pl A2BC
RQUT7

RQOUT8

*THS IS

*THS IS

*THHS IS

*THS IS

*THHS IS

*THS IS

*THHS IS

*THS IS

Pl ALAC CA1

Pl ALAC CA2

Pl A1BC CB1

Pl A1BC CB2

Pl A2AC CAl

Pl A2AC CA2

Pl A2BC CB1

Pl A2BC CB2

SERVI CE

SERVI CE

SERVI CE

SERVI CE

SERVI CE

SERVI CE

SERVI CE

SERVI CE

PROG- 25

RCUTI NE

RCUTI NE

RCUTI NE

RCUTI NE

RCUTI NE

RCUTI NE

RCUTI NE

RCUTI NE

PROG- 26

Pl A POLI NG ROUTI NE #2

The routine presented on the foll owi ng pages descri bes a way of
determ ning where an interrupt came fromout of a possible 16. (4 PIA s). Recal
each PI A has an A side and a B side. Each side of each PI A has a control register
of which bit 6 and/or bit 7 may get set if an interrupt came in on the interrupt
lines (CAl1, CA2, CB1, and CB2). As nentioned above, this is a way of poling the
control registers for the interrupts. There are many ot her ways of acconpli shing

this task.

This routine, called "POL" will read the control register of each PIA,
starting with the first PIA and determne if bit 6 or bit 7 is set, thus indicating
an interrupt. Wen an interrupt has been detected via bit 6 or bit 7 of the contro
register, the MPUw || branch to a subroutine designated to service that particul ar
interrupt. On conpletion of servicing an interrupt, the MPU starts the poling
sequence again with the first PIA. Only after all control registers have been
pol ed, and no interrupts detected, does the MPU return to the programit was
executing before it was interrupted. A branch to POL (BRA PCOL) instruction nust be

the last instruction of each servicing routine.

PROG- 27

Fl ow Chart for PIA #2 Poling Routine

1ST
Pl A

SUBRCUTI NE
READ
NEXT FOR BIT 7 >
PI A

SUBROUTI NE

FOR BIT 6

YES

PROG- 28

Source Program for PIA #2 Poling Routine

100 NAM PI A
105 OPT MEM
110 ORG O

130 SETX RMB 2
140 SPC 4

150 ORG $2004
160 PI A1AD RVB
165 PI A1AC RVB
170 PI A1BD RVB
175 PI A1BC RVB
180 PI A2AD RVB
185 PI A2AC RVB
190 PI A2BD RVB
195 PI A2BC RVB
200 ORG $2010
210 PI ASAD RVB
215 PI ASAC RVB
220 PI A3BD RVB
225 PI A3BC RVB
230 ORG $2020
240 PI AAAD RVB
245 Pl AAAC RVB
250 PI A4BD RVB
255 Pl AABC RVB
260 SPC 4

270 ORG $1000
280 * $1000 THRU $102D ARE THE SERVI CI NG ROUTI NES
390 * FOR THE 4 PI AS

300 JMP ROUT1

310 JMP ROUT2

320 JMP ROUT3

330 JMP RQUT4

340 JMP RQUTS

350 JMP ROUT6

360 JMP RQUTY

370 JMP ROUT8

380 JMP ROUT9

390 JMP RQUT10

400 JMP ROUT11

410 JMP ROUT12

420 JWMP ROUT13

430 JMP ROUT14

440 JWMP ROUT15

450 JMP ROUT16

PR RRRRPRRR

PR RR

PR RR

Source Program for PIA #2 Poling Routine

470
480
490
500
510
520
525
530
540
550
560
570
580
590
600
610
620
630
640
650
660
670
680
690
700
710
720
730
740
750
760
770
780
790
800
810
820
830
840
845
850
860
865
870
880
885
890
900
901 *
910

* THHS IS A SAMPLE RQUTI NE FOR
* POLLI NG PI A | NTERUPTS

SPC3
PCL LDA A #3$10
STA A SETX

CLR B

LDX #0

LDA A PI A1IAC
AND A #%11000000
BNE | NTER

ADD B #6

LDA A PI A1BC
AND A #%11000000
BNE | NTER

ADD B #6

LDA A PI A2AC
AND A #%11000000
BNE | NTER

ADD B #6

LDA A PI A2BC
AND A #%11000000
BNE | NTER

ADD B #6

LDA A PI ABAC
AND A #%11000000
BNE | NTER

ADD B #6

LDA A PI A3BC
AND A #%11000000
BNE | NTER

ADD B #6

LDA A PI AAAC
AND A #%41000000
BNE | NTER

ADD B #6

LDA A Pl AABC
AND A #%11000000
BNE | NTER

RTI

SPC3

I NTER STA B SETX+1

LDX SETX
TST A

BM SERVE
ADD B #3
STA B SETX+1
LDX SETX

SERVE JWP 0, X JUMP TO A SERVI CE ROUTI NE
BASED ON THE VALUE OF X

MON

PROG- 29

